Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Genomics ; 24(1): 604, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821834

RESUMO

BACKGROUND: Cashmere has long been used as the raw material for wool textiles. The diameter of the cashmere fibre determines its quality and economic value. However, the regulatory role of noncoding RNAs (ncRNAs) in cashmere fineness remains unclear, especially regarding the interaction between ncRNAs and coding RNAs. RESULTS: Transcriptome sequencing was used to identify the expression profiles of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) in the skin tissues of Jiangnan cashmere goats with different cashmere fineness levels. Integration analysis of ncRNA and coding RNA was performed in combination with previous research results. The results showed that 16,437 lncRNAs, 2234 circRNAs, and 1322 miRNAs were identified in 8 skin samples of cashmere goats. A total of 403 differentially expressed (DE) lncRNAs, 62 DE circRNAs and 30 DE miRNAs were identified in the skin tissues of the fine groups (Fe) and coarse groups (Ce). We predicted the target gene of DE lncRNA, the target gene of DE miRNA and the host gene of DE circRNA. Based on functional annotation and enrichment analysis of target genes, we found that DE lncRNAs could be involved in regulating the fineness traits of cashmere. The most potential lncRNAs were MSTRG.42054.1, MSTRG.18602.3, and MSTRG.2199.13. CONCLUSIONS: The data from this study enriched the cashmere goat noncoding RNA database and helped to supplement the annotation of the goat genome. The results provided a new direction for the breeding of cashmere characters.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/metabolismo , Cabras/genética , Cabras/metabolismo , Redes Reguladoras de Genes , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica
2.
BMC Genomics ; 24(1): 720, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017403

RESUMO

BACKGROUND: Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS: This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS: The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS: This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.


Assuntos
Multiômica , Pele , Animais , Pele/metabolismo , Cabras/genética
3.
Anim Biotechnol ; 34(8): 3827-3836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37428531

RESUMO

Liaoning cashmere goat (LCG) is one of the excellent cashmere goat breeds in China. Because of its larger size, better cashmere, and better cashmere production performance, people pay special attention to it. This article mainly studied the relationship between SNP loci of LIPE gene and ITGB4 gene and milk production, cashmere production and body measurement traits of LCGs. We further identified potential SNP loci by PCR-Seq polymorphism detection and gene sequence comparison of LIPE and ITGB4 genes. Further, we use SPSS and SHEsis software to analyze their relationship to production performance. The consequence indicated that CC genotype of LIPE gene T16409C locus was dominant genotype in milk production and cashmere production, while CT genotype of LIPE gene T16409C locus was dominant in body size. The CT genotype of C168T locus of ITGB4 gene is the dominant genotype of body type and cashmere production, while the dominant genotype of milk production is TT genotype. Through joint analysis, in haploid combinations, H1H2:CCCT is the dominant haplotype combination in cashmere fineness. H3H4:TTCT is a dominant haplotype combination of milk production traits and body measurement traits. These dominant genotypes can provide a reliable basis for the study of production performance of LCG.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/genética , Leite , Fenótipo , Genótipo
4.
Anim Biotechnol ; 34(7): 2863-2874, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165594

RESUMO

In this study, a total of 1140 Liaoning Cashmere Goats (LCG) were genotyped for single nucleotide polymorphism (SNP) of NFKBIA gene. There are 15 SNPs and 7 genotypes have been found, and G1547A (GG) genotype has been associated with cashmere fineness and cashmere yield. An integrated ceRNA regulatory network of NFKBIA gene was made. To prove NFKBIA and these non-coding RNAs (ncRNAs) may be related to cashmere fineness, we performed qPCR on these ncRNA in LCG coarse type skin (CT-LCG) and LCG fine type skin (FT-LCG). The result of qPCR showed lncRNA XLOC_011060 and ciRNA452 are at high expression level in CT-LCG, all miRNAs appear high expressed in FT-LCG, and mir-93 was the most significant difference between CT-LCG and FT-LCG. In addition, five miRNAs were selected for qPCR in different genotypes. The qPCR results showed that mir-93 might negatively regulate cashmere fineness and mir-17-5p may play a positive role in regulating cashmere fineness of individuals with G1355A (AG) genotype. These results demonstrated that NFKBIA gene is associated with cashmere fineness of LCG and G1547A (GG) genotype is the preferred marker genotype for cashmere fineness.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Polimorfismo de Nucleotídeo Único/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Genótipo , Cabras/genética
5.
Anim Biotechnol ; 34(7): 2094-2105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35622393

RESUMO

Reproductive traits have a high economic value in goat breeding, and increasing the number of lambs produced by ewes is of great importance to improve the production efficiency of goat farming. Lambing traits in goats are low heritability traits, but their genetic basis is ultimately determined by genes. This study aimed to investigate the relationship between INHA, RARG, and PGR gene polymorphisms and production performance, such as lambing, cashmere production, milk production, and body size in Liaoning cashmere goats. A total of six single nucleotide polymorphisms (SNPs) loci were identified in these three genes, G144A and T504C on the INHA gene, A56G, G144A, G490C on the RARG gene, and G109519T on the PGR gene. For lambing and cashmere production traits, the AA genotype of G144A on the INHA gene, TT on the T504C genotype, GG genotype of G144A on the INHA gene, A56G, G144A, and T504C on RARG and G109519T on PGR gene are dominant genotypes. AATT is a dominant haplotype combination. Allele G can be used as a molecular marker for lambing, cashmere, and milk production traits in Liaoning cashmere goats. Marker-assisted selection can be used for early selection to achieve improvement of genetic traits in Liaoning cashmere goats.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Feminino , Cabras/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Carneiro Doméstico , Reprodução/genética
6.
Anim Biotechnol ; 34(7): 2324-2335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35749728

RESUMO

This study aimed to investigate the relationship between the polymorphism of bile acid-CoA: amino acid N-acyltransferase (BAAT) and collagen type I alpha 1 chain (COL1A1) genes and the production performance of Liaoning Cashmere goat (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence comparison of BAAT and COL1A1 genes and PCR-Seq polymorphism, and the effect of SNPs on production performance was analyzed by SPSS software. The results showed that three SNPs loci were detected in BAAT gene: G7900A, T7967C, C7998T, and one SNP locus T6716C was detected in COL1AL gene. At G7900A locus, the dominant genotype for cashmere performance was GG, and the dominant genotype for body measurement traits and milk production traits was AG. At T7967C locus, the dominant genotype for cashmere performance was TT, and the dominant genotype for body measurement traits and milk production traits was CC. At C7998T locus, TT was the dominant genotype for cashmere performance, body measurement traits, and milk production traits. At the T6716C locus, TT was the dominant genotype for cashmere performance, body measurement traits, and milk production traits. H1H1: AACC is the dominant haplotype combination. Therefore, this study will provide a reliable reference for future research on cashmere production performance, body measurement traits, and milk production traits of LCG.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/genética , Fenótipo , Genótipo , Reação em Cadeia da Polimerase
7.
Anim Biotechnol ; 34(5): 1796-1806, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35507891

RESUMO

Liaoning cashmere goat (LCG) have tall bones, high cashmere production and outstanding meat production performance. In recent years, good breeding progress has not been made in terms of body size, meat yield, milk yield and other properties in terms of production. The study focused on the correlation between the SNPs of MSTN and IGFBP-3 genes with the body size performance, cashmere production and milk performance. The MSTN and IGFBP-3 gene sequence alignment and PCR-Seq polymorphism were used to detect the potential SNPs, and the correlation with production performance was analyzed by SPSS and SHEsis software. The results showed that the TT genotype at the T1662G locus of the MSTN gene is dominant and has significant advantages in body measurements such as sacrum height, chest width, and waist height. The C allele at the C4021T locus of IGFBP-3 gene shows an advantage in the body measurement performance. Among the haplotype combinations, H2H2:TGTC is preponderant combination for body size performance, H2H2:TGTC and H1H2:TGCC are preponderant combinations for cashmere production performance, H1H3:GGCC is preponderant combination for milk production performance. It may be a molecular marker for future selection and breeding.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Cabras/genética , Genótipo , Tamanho Corporal/genética
8.
Anim Biotechnol ; 34(3): 698-708, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34747683

RESUMO

Cashmere fineness is getting thicker, which is one of the key problems in cashmere breeding, however, there have been no systematic studies on the molecular regulation of cashmere fineness. The aim of this study was to investigate the relationship between KRT26 and TCHH gene polymorphism and production performance in Liaoning cashmere goats (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence alignment and PCR-Seq polymorphism of KRT26 and TCHH genes and analyzed the effect of SNPs on production performance by SPSS software. Two SNPs sites (A559T and A6839G) of two genes were detected. The AA genotype of KRT26 A559T locus was the dominant genotype. AG and GG at TCHH A6839G locus were the dominant genotypes. AAAA was the dominant haplotype combination. The results showed that KRT26 and TCHH genes were associated with cashmere fineness of LCG, and A559T (AA) and A6839G (GG) genotypes were the preferred marker genotypes for cashmere fineness, which provided more theoretical basis for further research on cashmere fineness.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/genética , Leite , Fenótipo , Reação em Cadeia da Polimerase
9.
Anim Biotechnol ; 34(4): 1583-1593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35253626

RESUMO

Liaoning cashmere goat (LCG) is a famous cashmere goat breed in China. Cashmere fineness, as an important index to evaluate cashmere quality, is also one of the problems to be improved for Liaoning cashmere goats. Transcriptome studies all mRNA transcribed by a specific tissue or cell in a certain period. It is a key link in the study of gene expression regulation. It plays an important role in the analysis of biological growth and disease. Transcriptome is spatio-temporal specific, that is, gene expression varies in different tissues or at different times. Three coarser and three fine LCG skin samples were sequenced by RNA-seq technology, and a total of 427 differentially expressed genes were obtained, including 291 up-regulated genes and 136 down-regulated genes. In the experiment, we screened out 16 genes that had significant differences in the expression of coarse and fine cashmere of Liaoning cashmere goats, so it was inferred that these 16 genes might have regulatory effects on cashmere fineness. Moreover, GO gene set enrichment analysis revealed that differential genes mainly consist of immune response, MHC protein complex, Heme binding and other pathways. KEGG analysis showed that transplant-versus-host disease and allograft rejection were the main pathways of differential genes.


Assuntos
Regulação da Expressão Gênica , Transcriptoma , Animais , Perfilação da Expressão Gênica/veterinária , Sequência de Bases , Cabras/genética , Folículo Piloso/metabolismo
10.
Anim Biotechnol ; 34(2): 310-320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34431751

RESUMO

N6-methyladenosine (m6A) is the most frequent internal modification of mRNA and lncRNA in eukaryotes. We used two high-throughput sequencing method, m6A-seq and RNA-seq to identify pivotal m6A-modified genes in cashmere fineness and fiber growth. 8062 m6A peaks were detected by m6A-seq, including 2157 upregulated and 6445 downregulated. Furthermore, by comparing m6A-modified genes of the male Liaoning Cashmere Goat (M-LCG) and female Liaoning Cashmere Goat (F-LCG) skin tissues, we get 862 differentially expressed m6A-modified genes. To identify differently expressed m6A genes associated with cashmere fineness, 11 genes were selected for validation using real time fluorescent quantitative PCR in M-LCG and F-LCG. This study provides an acadamic basis on the molecular regulation mechanism of m6A modification in cashmere growth process.


Assuntos
Cabras , Pele , Masculino , Feminino , Animais , Metilação , Cabras/genética , Pele/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq
11.
BMC Genomics ; 23(1): 527, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864447

RESUMO

BACKGROUND: Cashmere goats are a heterogeneous hairy mammal. The fineness of cashmere can affect its economic value. Therefore, in this study, we used transcriptome sequencing techniques to analyze the gene expression profiles of the skin tissues of cashmere goats with different cashmere fineness. The selected candidate genes were functionally verified with the secondary hair follicle hair papillary cells of cashmere goats. RESULTS: We identified 479 DEGs, of which 238 mRNAs were up-regulated in the fine velvet group and 241 mRNA were down-regulated. Based on functional annotation and protein interaction network analysis, we found some genes that may affect the fineness of cashmere, including SOX18, SOX4, WNT5A, IGFBP4, KAP8, KRT36, and FA2H. Using qRT-PCR, Western blot, CCK-8 cell viability detection, EDU cell proliferation detection, and flow cytometry, we found that overexpression of the FA2H gene could promote the proliferation of secondary hair follicle DPCs in cashmere goats. At the same time, we proved that FA2H could regulate the expression levels of the FGF5 and BMP2 genes in DPCs. CONCLUSION: The results of this study provide a useful reference for the genetics and breeding of Jiangnan cashmere goats and goat genome annotation, and provide an experimental basis for improving cashmere quality of the cashmere goat.


Assuntos
Cabras , Transcriptoma , Animais , Cabras/genética , Cabras/metabolismo , Cabelo , Folículo Piloso/metabolismo , RNA Mensageiro/genética
12.
Funct Integr Genomics ; 22(4): 503-513, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35366687

RESUMO

Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.


Assuntos
Cabras , Proteômica , Animais , China , Biologia Computacional , Cabras/genética , Pele/metabolismo
13.
Anim Biotechnol ; : 1-15, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527393

RESUMO

The purpose of this study was to analyze the relationship between COL6A5 (collagen type VI alpha 5 chain) and LOC102181374 (alcohol dehydrogenase 1) genes and the production performance of Liaoning cashmere goats by single nucleotide polymorphism (SNP). We have searched for SNP loci of COL6A5 and LOC102181374 genes through sequence alignment and PCR experiments, and have used SPSS and SHEsis software to analyze production data. We obtained five SNP loci in total, including three SNP loci (G50985A, G51140T, G51175A) in COL6A5 gene and two SNP loci (A10067G, T10108C) in LOC102181374 gene. The genotypes G50985A (AG), G51140T (GT), G51175A (AA), A10067G (AA), and T10108C (CC) of these loci have certain advantages in improving the production performance of Liaoning cashmere goats. The haplotype combinations that can improve production performance in COL6A5 gene were H1H5:AGGGAG, H4H4:GGGGAA, and H4H4:GGGGAA. H3H3:GGCC and H2H4:AGTT were the dominant combinations in LOC102181374 gene. At G51175A and A10067G loci, we found that H1H2:AAAG and H1H3:AGAA have dominant effects. These results may provide some support for the molecular breeding of production traits in Liaoning cashmere goats.

14.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080249

RESUMO

One of the critical elements in evaluating the quality of cashmere is its fineness, but we still know little about how it is regulated at the metabolic level. In this paper, we use UHPLC-MS/MS detection and analysis technology to compare the difference in metabolites between coarse cashmere (CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data, under positive mode four metabolites were significantly up-regulated and seven were significantly down-regulated. In negative mode, seven metabolites were significantly up-regulated and fourteen metabolites were significantly down-regulated. The two groups' most significant metabolites, Gly-Phe and taurochenodeoxycholate, may be crucial in controlling cashmere's growth, development, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism, primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes. These findings offer a new research idea for further study into the critical elements influencing cashmere's fineness.


Assuntos
Cabras , Espectrometria de Massas em Tandem , Animais , Pele/metabolismo
15.
Anim Biotechnol ; 32(1): 43-50, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31424321

RESUMO

This study was designed to identify the relationship of four genes (GDF9, BMPR-IB, FecB and ESR) polymorphisms in the 3'UTR region with litter size and cashmere performance of Liaoning cashmere goats (LCG, n = 1140). The ESR C463T and T575G loci of LCG were genotyped. The results of correlation analysis showed that five effective single nucleotide polymorphisms (SNPs) loci (C47T, C94T, C299T, C463T and T575G) were found in the four genes. The lambing number of CC and CT genotypic individuals at FecB C94T locus was significantly higher than that of TT genotypic individuals (45.7 and 46.8%, respectively); the lambing number of CC genotypic individuals at ESR C463T locus was significantly higher than that of CT, TT genotypic individuals (9 and 15%, respectively); There was a positive correlation between CC genotype at C463T locus and cashmere fineness. In this study, the relationship between FecB C94T and ESR C463T loci C alleles and lambing number in LCG was preliminarily revealed. These results further confirmed that FecB and ESR genes may be significantly correlated with high fecundity of LCG.


Assuntos
Cabras/genética , Cabelo/fisiologia , Tamanho da Ninhada de Vivíparos/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , DNA/genética , Feminino , Reação em Cadeia da Polimerase
16.
Mol Biotechnol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117978

RESUMO

Exploring the landscape of protein phosphorylation, this investigation focuses on skin samples from LCG (Liaoning Cashmere Goats), characterized by different levels of cashmere fineness. Employing LC-MS/MS technology, we meticulously scrutinized FT-LCG (fine-type Liaoning Cashmere Goats) and CT-LCG (coarse-type Liaoning Cashmere Goats). Identifying 512 modified proteins, encompassing 1368 phosphorylated peptide segments and 1376 quantifiable phosphorylation sites, our exploration further revealed consistent phosphorylation sites in both groups. Analysis of phosphorylated peptides unveiled kinase substrates, prominently featuring Protein Kinase C, Protein Kinase B and MAPK3-MAPK1-MAPK7-NLK-group. Differential analysis spotlighted 28 disparate proteins, comprising six upregulated and twenty-two downregulated. Cluster analysis showcased the robust clustering efficacy of the two sample groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses underscored the significance of the purine metabolism pathway, suggesting its pivotal role in modulating cashmere fineness in LCG. Notably, through differential protein analysis, two crucial proteins were identified: HSL-X (hormone-sensitive lipase isoform X1) and KPRP (keratinocyte proline-rich protein). Further evidence supports LIPE and KPRP as key genes regulating cashmere fineness, paving the way for promising avenues in further research. These findings not only contribute to a nuanced understanding of protein-level dynamics in cashmere but also provide a theoretical foundation for the selective breeding of superior Liaoning Cashmere Goat strands.

17.
Front Genet ; 12: 775499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096002

RESUMO

Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.

18.
Front Genet ; 12: 726670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858469

RESUMO

Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.

19.
PeerJ ; 8: e10217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240606

RESUMO

Tibetan cashmere goats are famous for producing the finest, softest and lightest cashmere fiber in China. The growth and development of skin are closely related to fineness and are the key factors affecting the quality of cashmere. To investigate the specific role of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in regulating cashmere fineness of Tibetan Cashmere goats in the anagen phase, we conducted high-throughput RNA sequencing of fine-type and coarse-type skin tissues. We identified 2,059 lncRNA candidates (1,589 lncRNAs annotated, 470 lncRNAs novel), and 80 differentially expressed (DE) lncRNAs and their potential targets were predicted. We also identified 384 DE messenger RNAs (mRNAs) out of 29,119 mRNAs. Several key genes in KRT26, KRT28, KRT39, IFT88, JAK3, NOTCH2 and NOTCH3 and a series of lncRNAs, including ENSCHIT00000009853, MSTRG.16794.17, MSTRG.17532.2, were shown to be potentially important for regulating cashmere fineness. GO and KEGG enrichment analyses of DE mRNAs and DE lncRNAs targets significantly enriched in positive regulation of the canonical Wnt signaling pathway, regulation of protein processing and metabolism processes. The mRNA-mRNA and lncRNA-mRNA regulatory networks further revealed potential transcripts involved in cashmere fineness. We further validated the expression patterns of DE mRNAs and DE lncRNAs by quantitative real-time PCR (qRT-PCR), and the results were consistent with the sequencing data. This study will shed new light on selective cashmere goat breeding, and these lncRNAs and mRNAs that were found to be enriched in Capra hircus RNA database.

20.
Genes (Basel) ; 10(4)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987022

RESUMO

Animal growth and development are regulated by long non-coding RNAs (lncRNAs). However, the functions of lncRNAs in regulating cashmere fineness are poorly understood. To identify the key lncRNAs that are related to cashmere fineness in skin, we have collected skin samples of Liaoning cashmere goats (LCG) and Inner Mongolia cashmere goats (MCG) in the anagen phase, and have performed RNA sequencing (RNA-seq) approach on these samples. The high-throughput sequencing and bioinformatics analyses identified 437 novel lncRNAs, including 93 differentially expressed lncRNAs. We also identified 3,084 differentially expressed messenger RNAs (mRNAs) out of 27,947 mRNAs. Gene ontology (GO) analyses of lncRNAs and target genes in cis show a predominant enrichment of targets that are related to intermediate filament and intermediate filament cytoskeleton. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, sphingolipid metabolism is a significant pathway for lncRNA targets. In addition, this is the first report to reveal the possible lncRNA-mRNA regulatory network for cashmere fineness in cashmere goats. We also found that lncRNA XLOC_008679 and its target gene, KRT35, may be related to cashmere fineness in the anagen phase. The characterization and expression analyses of lncRNAs will facilitate future studies on the potential value of fiber development in LCG.


Assuntos
Cabras/genética , Folículo Piloso/química , RNA Longo não Codificante/genética , Pele/metabolismo , Animais , Biologia Computacional , Redes Reguladoras de Genes/genética , Cabras/crescimento & desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , RNA Mensageiro/genética , Pele/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA