RESUMO
Immune checkpoint therapy (ICT) shows encouraging results in a subset of patients with metastatic castration-resistant prostate cancer (mCRPC) but still elicits a sub-optimal response among those with bone metastases. Analysis of patients' bone marrow samples revealed increased Th17 instead of Th1 subsets after ICT. To further evaluate the different tumor microenvironments, we injected mice with prostate tumor cells either subcutaneously or intraosseously. ICT in the subcutaneous CRPC model significantly increases intra-tumoral Th1 subsets and improves survival. However, ICT fails to elicit an anti-tumor response in the bone CRPC model despite an increase in the intra-tumoral CD4 T cells, which are polarized to Th17 rather than Th1 lineage. Mechanistically, tumors in the bone promote osteoclast-mediated bone resorption that releases TGF-ß, which restrains Th1 lineage development. Blocking TGF-ß along with ICT increases Th1 subsets and promotes clonal expansion of CD8 T cells and subsequent regression of bone CRPC and improves survival.
Assuntos
Linhagem da Célula , Imunoterapia , Linfócitos T Auxiliares-Indutores/citologia , Microambiente Tumoral , Animais , Antígenos/metabolismo , Neoplasias Ósseas/secundário , Antígeno CTLA-4/metabolismo , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Clonais , Citocinas/metabolismo , Modelos Animais de Doenças , Memória Imunológica/efeitos dos fármacos , Ipilimumab/farmacologia , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Análise de Sobrevida , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/efeitos dos fármacosRESUMO
Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.
Assuntos
Quinases Ciclina-Dependentes/metabolismo , Neoplasias da Próstata/patologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Masculino , Mutação de Sentido Incorreto , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Tomografia Computadorizada por Raios XRESUMO
Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.
Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Sequenciamento Completo do Genoma , Idoso , Anilidas/uso terapêutico , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Elementos Facilitadores Genéticos/genética , Duplicação Gênica , Rearranjo Gênico , Genes myc , Loci Gênicos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Fenótipo , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêuticoRESUMO
While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.
Assuntos
Variação Estrutural do Genoma/genética , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Variações do Número de Cópias de DNA , Exoma , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Sequências de Repetição em Tandem/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento Completo do Genoma/métodosRESUMO
The evolutionarily conserved minor spliceosome (MiS) is required for protein expression of â¼714 minor intron-containing genes (MIGs) crucial for cell-cycle regulation, DNA repair, and MAP-kinase signaling. We explored the role of MIGs and MiS in cancer, taking prostate cancer (PCa) as an exemplar. Both androgen receptor signaling and elevated levels of U6atac, a MiS small nuclear RNA, regulate MiS activity, which is highest in advanced metastatic PCa. siU6atac-mediated MiS inhibition in PCa in vitro model systems resulted in aberrant minor intron splicing leading to cell-cycle G1 arrest. Small interfering RNA knocking down U6atac was â¼50% more efficient in lowering tumor burden in models of advanced therapy-resistant PCa compared with standard antiandrogen therapy. In lethal PCa, siU6atac disrupted the splicing of a crucial lineage dependency factor, the RE1-silencing factor (REST). Taken together, we have nominated MiS as a vulnerability for lethal PCa and potentially other cancers.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Íntrons/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Transdução de Sinais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/genéticaRESUMO
Prostate cancer (PC) is the most frequently diagnosed malignancy and a leading cause of cancer deaths in US men. Many PC cases metastasize and develop resistance to systemic hormonal therapy, a stage known as castration-resistant prostate cancer (CRPC). Therefore, there is an urgent need to develop effective therapeutic strategies for CRPC. Traditional drug discovery pipelines require significant time and capital input, which highlights a need for novel methods to evaluate the repositioning potential of existing drugs. Here, we present a computational framework to predict drug sensitivities of clinical CRPC tumors to various existing compounds and identify treatment options with high potential for clinical impact. We applied this method to a CRPC patient cohort and nominated drugs to combat resistance to hormonal therapies including abiraterone and enzalutamide. The utility of this method was demonstrated by nomination of multiple drugs that are currently undergoing clinical trials for CRPC. Additionally, this method identified the tetracycline derivative COL-3, for which we validated higher efficacy in an isogenic cell line model of enzalutamide-resistant vs. enzalutamide-sensitive CRPC. In enzalutamide-resistant CRPC cells, COL-3 displayed higher activity for inhibiting cell growth and migration, and for inducing G1-phase cell cycle arrest and apoptosis. Collectively, these findings demonstrate the utility of a computational framework for independent validation of drugs being tested in CRPC clinical trials, and for nominating drugs with enhanced biological activity in models of enzalutamide-resistant CRPC. The efficiency of this method relative to traditional drug development approaches indicates a high potential for accelerating drug development for CRPC.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Nitrilas/farmacologia , Descoberta de Drogas , Castração , Resistencia a Medicamentos Antineoplásicos , Receptores Androgênicos/metabolismoRESUMO
Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/metabolismo , Cisteína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismoRESUMO
Androgen receptor (AR) is one of the key targets for the treatment of castration-resistant prostate cancer (CRPC). Current endocrine therapy can greatly improve patients with CRPC. However, with the change of pathogenic mechanism, acquired resistance often leads to the failure of treatment. Studies have shown that tanshinone IIA (TS-IIA) and its derivatives have significant antitumor activity, and have certain AR-targeting effects, but the mechanism is unknown. In this study, the TS-IIA analog TB3 was found to significantly inhibit the growth of CRPC in vitro and in vivo. Molecular docking, cellular thermal shift assay, and cycloheximide experiments confirmed that AR was the target of TB3 and promoted the degradation of AR. Furthermore, TB3 can significantly inhibit glycolysis metabolism by targeting the AR/PKM2 axis. The addition of pyruvic acid could significantly alleviate the inhibitory effect of TB3 on CRPC cells. Besides, the knockdown of AR or PKM2 also could reverse the effect of TB3 on CRPC cells. Taken together, our study suggests that TS-IIA derivative TB3 inhibits glycolysis to prevent the CRPC process by targeting the AR/PKM2 axis.
Assuntos
Abietanos , Glicólise , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Proteínas de Ligação a Hormônio da Tireoide , Animais , Humanos , Masculino , Camundongos , Abietanos/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Hormônios Tireóideos/metabolismoRESUMO
This study delves into the unexplored realm of castration-resistant prostate cancer (CRPC) by investigating the role of TRIM28 and its intricate molecular mechanisms using high-throughput single-cell transcriptome sequencing and advanced bioinformatics analysis. Our comprehensive examination unveiled dynamic TRIM28 expression changes, particularly in immune cells such as macrophages and CD8+ T cells within CRPC. Correlation analyses with TCGA data highlighted the connection between TRIM28 and immune checkpoint expression and emphasized its pivotal influence on the quantity and functionality of immune cells. Using TRIM28 knockout mouse models, we identified differentially expressed genes and enriched pathways, unraveling the potential regulatory involvement of TRIM28 in the cGAS-STING pathway. In vitro, experiments further illuminated that TRIM28 knockout in prostate cancer cells induced a notable anti-tumor immune effect by inhibiting M2 macrophage polarization and enhancing CD8+ T cell activity. This impactful discovery was validated in an in situ transplant tumor model, where TRIM28 knockout exhibited a deceleration in tumor growth, reduced proportions of M2 macrophages, and enhanced infiltration of CD8+ T cells. In summary, this study elucidates the hitherto unknown anti-tumor immune role of TRIM28 in CRPC and unravels its potential regulatory mechanism via the cGAS-STING signaling pathway. These findings provide novel insights into the immune landscape of CRPC, offering promising directions for developing innovative therapeutic strategies.
Assuntos
Linfócitos T CD8-Positivos , Proteínas de Membrana , Neoplasias de Próstata Resistentes à Castração , Proteína 28 com Motivo Tripartido , Animais , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genéticaRESUMO
HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reino UnidoRESUMO
The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.
Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Fase G2/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Fosforilação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genéticaRESUMO
Androgen deprivation therapy is the most effective treatment for advanced prostate cancer, but almost all cancer eventually becomes castration resistant, and the underlying mechanisms are largely unknown. Here, we show that an intrinsic constitutively activated feedforward signaling circuit composed of IκBα/NF-κB(p65), miR-196b-3p, Meis2, and PPP3CC is formed during the emergence of castration-resistant prostate cancer (CRPC). This circuit controls the expression of stem cell transcription factors that drives the high tumorigenicity of CRPC cells. Interrupting the circuit by targeting its individual components significantly impairs the tumorigenicity and CRPC development. Notably, constitutive activation of IκBα/NF-κB(p65) in this circuit is not dependent on the activation of traditional IKKß/NF-κB pathways that are important in normal immune responses. Therefore, our studies present deep insight into the bona fide mechanisms underlying castration resistance and provide the foundation for the development of CRPC therapeutic strategies that would be highly efficient while avoiding indiscriminate IKK/NF-κB inhibition in normal cells.
Assuntos
Calcineurina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fator de Transcrição RelA/metabolismo , Antagonistas de Androgênios/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Calcineurina/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes myc , Proteínas de Homeodomínio/genética , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Transgênicos , MicroRNAs/genética , Inibidor de NF-kappaB alfa/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Carga Tumoral , Células Tumorais CultivadasRESUMO
AIMS: Tumor fatty acid (FA) metabolic plasticity plays a pivotal role in resistance to therapy and poses limitations to anticancer strategies. In this study, our aim is to uncover the role of acetate metabolism in neurodifferentiation (NED)-mediated castration-resistant prostate cancer (CRPC). METHODS: We conducted analyses using LC-MS/MS on clinical prostate cancer tissue before and after hormone therapy. We established tumor xenograft mouse models, primary tumor cells, and human-derived organoids to detect the novel mechanism of NED and to identify potential therapies. RESULTS: The hormone therapy-induced upregulation of acetate metabolism was mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2), which increased c-MYC expression for NED induction. Notably, combined treatment with an ACSS2 inhibitor and enzalutamide significantly reduced the xenograft tumor volume. CONCLUSION: Our findings uncovered the critical role of acetate metabolism in NED-mediated CRPC and suggest that ACSS2 inhibitors may represent a novel, low-toxicity strategy when combined with hormone therapy for treating patients with NED-mediated CRPC.
RESUMO
Several life-prolonging therapies for metastatic castration-resistant prostate cancer (mCRPC) are available, including radium-223 dichloride (223Ra), which was approved based on phase 3 data demonstrating improved overall survival (OS) and a favorable safety profile. To date, real-world evidence for 223Ra use in Taiwan is from three studies of <50 patients. This observational study (NCT04232761) enrolled male patients with histologically/cytologically confirmed mCRPC with bone metastases from centers across Taiwan. 223Ra was prescribed as part of routine practice by investigators. Patients with prior 223Ra treatment were excluded. The primary objective was to assess 223Ra safety; secondary objectives evaluated efficacy parameters, including OS. Overall, 224 patients were enrolled. Most patients had an Eastern Cooperative Oncology Group performance status of 0/1 (79.0%) and ≤20 bone metastases (69.2%); no patients had visceral metastases. 223Ra was first- or second-line therapy in 23.2% and 47.7% of patients, respectively. The total proportion of patients who received 5-6 223Ra cycles was 68.8%; this proportion was greater with first-line use (84.3%) than second- (65.7%) or third-/fourth-line use (64.1%). More chemotherapy-naïve patients (61.9%) completed the 6-cycle 223Ra treatment than chemotherapy-exposed patients (56.7%). Any-grade treatment-emergent adverse events (TEAEs) and serious TEAEs occurred in 54.0% and 28.6% of patients, respectively, while 12% experienced 223Ra-related adverse events. Median OS was 15.7 months (95% confidence interval 12.13-19.51); patients receiving 5-6 223Ra injections and earlier 223Ra use had longer OS than those receiving fewer injections and later 223Ra use. 223Ra provides a well-tolerated and effective treatment for Taiwanese patients with mCRPC and bone metastases.
Assuntos
Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Rádio (Elemento) , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Rádio (Elemento)/uso terapêutico , Rádio (Elemento)/efeitos adversos , Idoso , Neoplasias Ósseas/secundário , Neoplasias Ósseas/radioterapia , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Taiwan/epidemiologia , Resultado do Tratamento , Radioisótopos/uso terapêutico , Radioisótopos/efeitos adversosRESUMO
BACKGROUND: The PARP inhibitor (PARPi) olaparib is approved for homologous recombination repair (HRR) gene-altered metastatic castration-resistant prostate cancer (mCRPC). However, there is significant heterogeneity in response to PARPi in patients with mCRPC. Better clinical biomarkers are needed to identify patients likely to benefit from PARPi. METHODS: Patients with prostate adenocarcinoma and panel sequencing at Dana-Farber Cancer Institute were identified. Mutational signature analysis was performed using SigMA to characterize tumors as HRR deficient (HRD). The validity of SigMA to identify patients likely to benefit from olaparib was compared to the current FDA label (presence of a deleterious alteration in one of 14 HRR genes). RESULTS: 546 patients were identified, of which 34% were HRD. Among patients with HRR gene alterations, only patients with BRCA2 two-copy loss (2CL) were more likely to be HRD compared to patients without HRR gene alterations (74% vs 31%; P = 9.1 × 10-7). 28 patients with mCRPC received olaparib, of which 13 were HRD and 9 had BRCA2 2CL. SigMA improved upon the current FDA label for predicting PSA50 (sensitivity: 100% vs 90%; specificity: 83% vs 44%; PPV: 77% vs 47%; NPV: 100% vs 89%) and rPFS > 6 months (sensitivity: both 92%; specificity: 93% vs 53%; PPV: 92% vs 63%; NPV: 93% vs 89%). On multivariate analysis, incorporating prognostic clinical factors and HR gene alterations, SigMA-predicted HRD independently associated with improved PSA-PFS (HR = 0.086, p = 0.00082) and rPFS (HR = 0.078, p = 0.0070). CONCLUSIONS: SigMA-predicted HRD may better identify patients likely to benefit from olaparib as compared to the current FDA label. Larger studies are needed for further validation.
RESUMO
BACKGROUND: Pan-immune inflammation value (PIV) is a newly defined biomarker that includes whole cellular components that are indicators of systemic inflammation in complete blood count (CBC), easily accessible and has the potential to reflect both the body's immune response and systemic inflammation status. This study evaluated the pretreatment PIV for its prognostic impact on overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with Lutetium-177 (177Lu)-PSMA-617. METHODS: The PIV was based on the earliest CBC obtained within 1 month before treatment initiation. Patients were categorized into low and high PIV groups based on the median pretreatment PIV, and the relationship between OS and PIV groups was assessed by multivariable analysis. RESULTS: A total of 43 patients with mCRPC treated with (177Lu)-PSMA-617 were included. The median OS was longer in the low PIV group (15.1 months [95% confidence interval [CI] 10.6-19.5]) than in the high PIV group (4.2 months [95% CI 1.7-6.6]) (p < 0.001). In multivariable analysis, high PIV (hazard ratio [HR]: 4.3, 95% CI 1.194-15.93, p = 0.026) and high Eastern Cooperative Oncology Group performance score (HR: 7.05, 95% CI 1.48-33.46, p = 0.014) were associated with shorter OS. CONCLUSION: This study showed that pretreatment PIV might be a prognostic factor in patients with mCRPC treated with (177Lu)-PSMA-617.
RESUMO
BACKGROUND: A head-to-head comparison between enzalutamide (ENZ) and abiraterone plus prednisolone (ABI) revealed similar survival benefits for castration-resistant prostate cancer (CRPC) in the ENABLE study for PCa. Considering that a dose reduction of ENZ and ABI has demonstrated sufficient inhibitory ability of androgen receptor (AR) signaling, we analyzed the efficacy of modified doses of these agents in the ENABLE study for PCa. METHODS: This investigator-initiated, multicenter, randomized controlled trial that was conducted in Japan analyzed the prespecified survival endpoints, prostate-specific antigen (PSA) response rate ( ≥50% decline from baseline), and safety profile in patients treated with modified doses (ENZ ≤ 120 mg/day, ABI ≤ 750 mg/day) compared with those treated with a standard dose (ENZ 160 mg/day, ABI 1000 mg/day) as a starting dose. RESULTS: In total, 92 patients in each arm were treated and analyzed; 16 patients were treated with a modified dose in both the ENZ and ABI arms, respectively. Moreover, 32 patients treated with modified doses showed a significantly better time to PSA progression (TTPP) and overall survival (OS) compared with the 152 patients treated with a standard dose (HR 0.47, 95%CI 0.27-0.83, p = 0.0379, and HR 0.35, 95%CI 0.19-0.63, p = 0.0162). Despite a significantly longer TTPP in the modified ABI group than in the standard ABI group (HR 0.29, 95%CI 0.14-0.62, p = 0.0248), no significant difference was observed in the TTPP between the modified and standard ENZ groups (p = 0.5366). Furthermore, similar adverse event rates and grades were observed in each treatment dose group. CONCLUSIONS: The modified doses of ABI showed better TTPP than the standard dose of ABI and may be a potential treatment option for CRPC patients; however, its mechanism is still unclear, although its ability to suppress AR signaling is equivalent to that of a standard dose.
RESUMO
BACKGROUND: The prognosis of metastatic castration-resistant prostate cancer (mCRPC) is influenced by numerous individual factors. Despite various proposed prognostic models, the clinical application of these remains limited, probably due to complexity. Our study aimed to evaluate the predictive value of the Bellmunt risk score, which is well-known for urothelial carcinoma and easily assessed, in mCRPC patients. METHODS: The Bellmunt risk score was calculated from three risk factors (Eastern Cooperative Oncology Group Performance Status (ECOG PS) ≥1, serum hemoglobin <10 g/dL, presence of liver metastases) in 125 patients who received first-line mCRPC treatment between 2005 and 2023. In addition, a modified score was established (one point each for hemoglobin <10 g/dL and the presence of liver metastases added to the ECOG PS). Associations with overall survival (OS) under first- and second-line therapy were tested using Cox regression analyzes, log-rank tests, concordance index (C-index) and time-dependent receiver operating characteristic. RESULTS: There is a significant correlation between the level of the Bellmunt risk score and shorter OS (hazard ratio: 3.23, 95% confidence interval: 2.06-5.05; log-rank p < 0.001; C-index: 0.724). The semi-quantitative modified risk score showed even better prognostic discrimination (log-rank p < 0.001, C-index: 0.764). The score and its dynamics were also predictive in the second-line setting (log-rank p < 0.001 and = 0.01; C-index: 0.742 and 0.595). CONCLUSIONS: The Bellmunt risk score is easy to assess and provides useful prognostic information in mCRPC, and can support physicians in their treatment decisions.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Prognóstico , Pessoa de Meia-Idade , Medição de Risco/métodos , Fatores de Risco , Idoso de 80 Anos ou mais , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/mortalidade , Estudos Retrospectivos , Valor Preditivo dos Testes , Metástase NeoplásicaRESUMO
BACKGROUND: Proton pump inhibitors (PPIs) are widely used due to their affordability and minimal severe side effects. However, their influence on the efficacy of cancer treatments, particularly androgen receptor signaling inhibitors (ARSIs), remains unclear. This study investigates the impact of PPI usage on the treatment outcomes in patients with metastatic castration-resistant prostate cancer (mCRPC). METHODS: A total of 117 mCRPC patients were retrospectively analyzed and divided into two groups based on the concomitant use of PPI at the initiation of ARSI treatment: PPI+ (n = 38) and PPI- (n = 79). Patient characteristics, including age at ARSI treatment administered, prostate-specific antigen (PSA) value at ARSI treatment administered, International Society of Urological Pathology grade group at prostate biopsy, metastatic site at ARSI treatment administered, prior docetaxel (DTX) treatment, and type of ARSI (abiraterone acetate or enzalutamide) were recorded. Progression-free survival (PFS), overall survival (OS), and PSA response rates were compared between the two groups. Patients were further stratified by clinical background to compare PFS and OS between the two groups. RESULTS: The PPI- group exhibited significantly extended PFS and a trend toward improved OS. For PSA response (reduction of 50% or more from baseline), the rates were 62.3% and 45.9% in the PPI- group and the PPI+ group, respectively. For deep PSA response (reductions of 90% or more from baseline), the rates were 36.4% and 24.3% in the PPI- group and the PPI+ group, respectively. The effects were consistent across subgroups divided by prior DTX treatment and type of ARSI administered. CONCLUSIONS: The administration of PPIs appears to diminish the therapeutic efficacy of ARSIs in mCRPC patients. Further prospective studies are needed to confirm these findings and explore the biological mechanisms involved.
Assuntos
Antagonistas de Receptores de Andrógenos , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Inibidores da Bomba de Prótons , Humanos , Masculino , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Estudos Retrospectivos , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antagonistas de Receptores de Andrógenos/farmacologia , Pessoa de Meia-Idade , Feniltioidantoína/uso terapêutico , Acetato de Abiraterona/uso terapêutico , Acetato de Abiraterona/administração & dosagem , Resultado do Tratamento , Idoso de 80 Anos ou mais , Benzamidas , Nitrilas/uso terapêutico , Antígeno Prostático Específico/sangue , Transdução de Sinais/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Intervalo Livre de Progressão , Metástase Neoplásica , Docetaxel/uso terapêutico , Docetaxel/administração & dosagemRESUMO
BACKGROUND: Metastatic castration-resistant prostate cancer (CRPC), the most refractory prostate cancer, inevitably progresses and becomes unresponsive to hormone therapy, revealing a pressing unmet need for this disease. Novel agents targeting HDAC6 and microtubule dynamics can be a potential anti-CRPC strategy. METHODS: Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay and anchorage-dependent colony formation assay. Flow cytometric analysis of propidium iodide staining was used to determine cell-cycle progression. Cell-based tubulin polymerization assay and confocal immunofluorescence microscopic examination determine microtubule assembly/disassembly status. Protein expressions were determined using Western blot analysis. RESULTS: A total of 82 novel derivatives targeting HDAC6 were designed and synthesized, and Compound 25202 stood out, showing the highest efficacy in blocking HDAC6 (IC50, 3.5 nM in enzyme assay; IC50, 1.0 µM in antiproliferative assay in CRPC cells), superior to tubastatin A (IC50, 5.4 µM in antiproliferative assay). The selectivity and superiority of 25202 were validated by examining the acetylation of both α-tubulin and histone H3, detecting cell apoptosis and HDACs enzyme activity assessment. Notably, 25202 but not tubastatin A significantly decreased HDAC6 protein expression. 25202 prolonged mitotic arrest through the detection of cyclin B1 upregulation, Cdk1 activation, mitotic phosphoprotein levels, and Bcl-2 phosphorylation. Compound 25202 did not mimic docetaxel in inducing tubulin polymerization but disrupted microtubule organization. Compound 25202 also increased the phosphorylation of CDC20, BUB1, and BUBR1, indicating the activation of the spindle assembly checkpoint (SAC). Moreover, 25202 profoundly sensitized cisplatin-induced cell death through impairment of cisplatin-evoked DNA damage response and DNA repair in both ATR-Chk1 and ATM-Chk2 pathways. CONCLUSION: The data suggest that 25202 is a novel selective and potent HDAC6 inhibitor. Compound 25202 blocks HDAC6 activity and interferes microtubule dynamics, leading to SAC activation and mitotic arrest prolongation that eventually cause apoptosis of CRPC cells. Furthermore, 25202 sensitizes cisplatin-induced cell apoptosis through impeding DNA damage repair pathways.