Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 42(1): 104-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34427142

RESUMO

Gene vectors targeting CNS endothelial cells allow to manipulate the blood-brain barrier and to correct genetic defects in the CNS. Because vectors based on the adeno-associated virus (AAV) have a limited capacity, it is essential that the DNA sequence controlling gene expression is short. In addition, it must be specific for endothelial cells to avoid off-target effects. To develop improved regulatory sequences with selectivity for brain endothelial cells, we tested the transcriptional activity of truncated promoters of eleven (brain) endothelial-specific genes in combination with short regulatory elements, i.e., the woodchuck post-transcriptional regulatory element (W), the CMV enhancer element (C), and a fragment of the first intron of the Tie2 gene (S), by transfecting brain endothelial cells of three species. Four combinations of regulatory elements and short promoters (Cdh5, Ocln, Slc2a1, and Slco1c1) progressed through this in-vitro pipeline displaying suitable activity. When tested in mice, the regulatory sequences C-Ocln-W and C-Slc2a1-S-W enabled a stronger and more specific gene expression in brain endothelial cells than the frequently used CAG promoter. In summary, the new regulatory elements efficiently control gene expression in brain endothelial cells and may help to specifically target the blood-brain barrier with gene therapy vectors.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Marcação de Genes , Terapia Genética , Elementos de Resposta , Transfecção , Animais , Camundongos
2.
Cell Rep ; 39(8): 110845, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613592

RESUMO

Modern biology is increasingly reliant on optical technologies, including visualization and longitudinal monitoring of cellular processes. The major limitation here is the availability of animal models to track the molecules and cells in their natural environment in vivo. Owing to the integrity of the studied tissue and the high stability of transgene expression throughout life, transgenic mice encoding fluorescent proteins and biosensors represent unique tools for in vivo studies in norm and pathology. We review the strategies for targeting probe expression in specific tissues, cell subtypes, or cellular compartments. We describe the application of transgenic mice expressing fluorescent proteins for tracking protein expression patterns, apoptotic events, tissue differentiation and regeneration, neurogenesis, tumorigenesis, and cell fate mapping. We overview the possibilities of functional imaging of secondary messengers, neurotransmitters, and ion fluxes. Finally, we provide the rationale and perspectives for the use of transgenic imaging probes in translational research and drug discovery.


Assuntos
Integrases , Neurogênese , Animais , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas , Transgenes
3.
Genes (Basel) ; 11(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326553

RESUMO

Somatic embryogenesis (SE) is a more rapid and controllable method for plant propagation than traditional breeding methods. However, it often suffers from limited efficiency. SERK1 promotes SE in several plants, including pineapple (Ananas comosus L.). We investigate the embryonic cell-specific transcriptional regulation of AcSERK1 by methylation analysis of CpG islands in AcSERK1 regulatory sequences. This revealed differences in the methylation status of CpG islands between embryonic callus and non-embryonic callus; the methylation inhibitor 5-azaC increased AcSERK1 expression and also accelerated SE. These findings indicate that the expression of AcSERK1 is regulated epigenetically. This study lays the foundation for further analysis of epigenetic regulatory mechanisms that may enhance the efficiency of SE in pineapple and other plants.


Assuntos
Ananas/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Ananas/crescimento & desenvolvimento , Ananas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo
4.
Methods Mol Biol ; 2094: 23-30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797287

RESUMO

TAL effector nucleases (TALENs) are powerful tools to create specific knockout mutants in plants. The use of an optimized TALEN backbone and the choice of promoters that are strongly active in the stem cells of the shoot apical meristem are key to a high rate of heritable targeted mutations. Recommendations for construct design and screening for mutants are given in this chapter.


Assuntos
Arabidopsis/genética , Edição de Genes/métodos , Células Germinativas/metabolismo , Mutagênese Sítio-Dirigida/métodos , Plantas Geneticamente Modificadas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
5.
Front Plant Sci ; 11: 800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612620

RESUMO

CRISPR/Cas9-based systems are efficient genome editing tools in a variety of plant species including soybean. Most of the gene edits in soybean plants are somatic and non-transmissible when Cas9 is expressed under control of constitutive promoters. Tremendous effort, therefore, must be spent to identify the inheritable edits occurring at lower frequencies in plants of successive generations. Here, we report the development and validation of genome editing systems in soybean and Arabidopsis based on Cas9 driven under four different egg-cell specific promoters. A soybean ubiquitin gene promoter driving expression of green fluorescent protein (GFP) is incorporated in the CRISPR/Cas9 constructs for visually selecting transgenic plants and transgene-evicted edited lines. In Arabidopsis, the four systems all produced a collection of mutations in the T2 generation at frequencies ranging from 8.3 to 42.9%, with egg cell-specific promoter AtEC1.2e1.1p being the highest. In soybean, function of the gRNAs and Cas9 expressed under control of the CaMV double 35S promoter (2x35S) in soybean hairy roots was tested prior to making stable transgenic plants. The 2x35S:Cas9 constructs yielded a high somatic mutation frequency in soybean hairy roots. In stable transgenic soybean T1 plants, AtEC1.2e1.1p:Cas9 yielded a mutation rate of 26.8%, while Cas9 expression driven by the other three egg cell-specific promoters did not produce any detected mutations. Furthermore, the mutations were inheritable in the T2 generation. Our study provides CRISPR gene-editing platforms to generate inheritable mutants of Arabidopsis and soybean without the complication of somatic mutagenesis, which can be used to characterize genes of interest in Arabidopsis and soybean.

6.
Genes (Basel) ; 10(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683990

RESUMO

Plant tissue culture methods, such as somatic embryogenesis, are attractive alternatives to traditional breeding methods for plant propagation. However, they often suffer from limited efficiency. Somatic embryogenesis receptor kinase (SERK)1 is a marker gene of early somatic embryogenesis in several plants, including pineapple. It can be selectively induced and promotes a key step in somatic embryogenesis. We investigated the embryonic cell-specific transcriptional regulation of AcSERK1 by constructing a series of vectors carrying the GUS(Beta-glucuronidase) reporter gene under the control of different candidate cis-regulatory sequences. These vectors were transfected into both embryonic and non-embryonic callus, and three immature embryo stages and the embryonic-specific activity of the promoter fragments was analyzed. We found that the activity of the regulatory sequence of AcSERK1 lacking -983 nt ~-880 nt, which included the transcription initiation site, was significantly reduced in the embryonic callus of pineapple, accompanied by the loss of embryonic cell-specific promoter activity. Thus, this fragment is an essential functional segment with highly specific promoter activity for embryonic cells, and it is active only from the early stages of somatic embryo development to the globular embryo stage. This study lays the foundation for identifying mechanisms that enhance the efficiency of somatic embryogenesis in pineapple and other plants.


Assuntos
Ananas/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA