Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(17): e2307344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133516

RESUMO

The intrinsic poor rheological properties of MXene inks result in the MXene nanosheets in dried MXene microfibers prone to self-stacking, which is not conducive to ion transport and diffusion, thus affecting the electrochemical performance of fiber-based supercapacitors. Herein, robust cellulose nanofibrils (CNF)/MXene hybrid fibers with high electrical conductivity (916.0 S cm-1) and narrowly distributed mesopores are developed by wet spinning. The interfacial interaction between CNF and MXene can be enhanced by hydrogen bonding and electrostatic interaction due to their rich surface functional groups. The interfacial modulation of MXene by CNF can not only regulate the rheology of MXene spinning dispersion, but also enhance the mechanical strength. Furthermore, the interlayer distance and self-stacking effect of MXene nanosheets are also regulated. Thus, the ion transport path within the fiber material is optimized and ion transport is accelerated. In H2SO4 electrolyte, a volumetric specific capacitance of up to 1457.0 F cm-3 (1.5 A cm-3) and reversible charge/discharge stability are demonstrated. Intriguingly, the assembled supercapacitors exhibit a high-volume energy density of 30.1 mWh cm-3 at 40.0 mW cm-3. Moreover, the device shows excellent flexibility and cycling stability, maintaining 83% of its initial capacitance after 10 000 charge/discharge cycles. Practical energy supply applications (Power for LED and electronic watch) can be realized.

2.
Small ; : e2405664, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358964

RESUMO

The integration of bio-based materials into triboelectric nanogenerators (TENGs) for energy harvesting from human body motions has sparked considerable research attention. Here, a silanated cellulose nanofibril (SCNF) aerogel is reported for structurally reliable TENGs and reversely compressible Taekwondo scoring sensors under repeated impacts. The preparation of the aerogel involves silanizing cellulose nanofibers (CNFs) with vinyltrimethoxysilane (VTMS), following by freeze-drying and post-heating treatment. The SCNF aerogel with crosslinked physico-chemical bonding and highly porous network is found to exhibit superior mechanical strength and reversible compressibility as well as enhanced water repellency and electron-donating ability. The TENG having a tribo-positive SCNF layer exhibits exceptional triboelectric performances, generating a voltage of 270 V, current of 11 µA, and power density of 401.1 mW m-2 under an applied force of 8 N at a frequency of 5 Hz. With its inherent merits in material composition, structural configuration, and device sensitivity, the SCNF TENG demonstrates the capability to seamlessly integrate into a Taekwondo protection gear, serving as an efficient self-powered sensor for monitoring hitting scores. This study highlights the significant potential of a facilely fabricated SCNF aerogel for the development of high-performance, bio-friendly, and cost-effective Bio-TENGs, enabling their application as self-powered wearable devices and sports engineering sensors.

3.
Small ; 20(36): e2401580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38708893

RESUMO

The construction of flexible actuators with ultra-fast actuation and robust mechanical properties is crucial for soft robotics and smart devices, but still remains a challenge. Inspired by the unique mechanism of pinecones dispersing seeds in nature, a hygroscopic actuator with interlayer network-bonding connected gradient structure is fabricated. Unlike most conventional bilayer actuator designs, the strategy leverages biobased polyphenols to construct strong interfacial H-bonding networks between 1D cellulose nanofibers and 2D graphene oxide, endowing the materials with high tensile strength (172 MPa) and excellent toughness (6.64 MJ m-3). Furthermore, the significant difference in hydrophilicity between GO and rGO, along with the dense interlayer H-bonding, enables ultra-fast water exchange during water absorption and desorption processes. The resulted actuator exhibits ultra-fast driving speed (154° s-1), excellent pressure-resistant and cyclic stability. Taking advantages of these benefits, the actuator can be fabricated into smart devices (such as smart grippers, humidity control switches) with significant potential for practical applications. The presented approach to constructing interlayer H-bonding in gradient structures is instructive for achieving high performance and functionalization of biomass nanomaterials and the complex of 1D/2D nanomaterials.

4.
Small ; 20(43): e2401283, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38924314

RESUMO

Fibrillated cellulose-based nanocomposites can improve energy efficiency of building envelopes, especially windows, but efficiently engineering them with a flexible ability of lighting and thermal management remains highly challenging. Herein, a scalable interfacial engineering strategy is developed to fabricate haze-tunable thermal barrier films tailored with phosphorylated cellulose nanofibrils (PCNFs). Clear films with an extremely low haze of 1.6% (glass-scale) are obtained by heat-assisted surface void packing without hydrophobization of nanocellulose. PCNF gel cakes serve here as templates for surface roughening, thereby resulting in a high haze (73.8%), and the roughened films can block heat transfer by increasing solar reflection in addition to a reduced thermal conduction. Additionally, obtained films can tune distribution of light from visible to near-infrared spectral range, enabling uniform colored lighting and inhibiting localized heating. Furthermore, an integrated simulation of lighting and cooling energy consumption in the case of office buildings shows that the film can reduce the total energy use by 19.2-38.1% under reduced lighting levels. Such a scalable and versatile engineering strategy provides an opportunity to endow nanocellulose-reinforced materials with tunable optical and thermal functionalities, moving their practical applications in green buildings forward.

5.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611944

RESUMO

Two types of cellulose nanofibrils (CNFs) were isolated from cotton linter fibers and hardwood fibers through mechanical fibrillation methods. The dialdehyde cellulose nanofibrils (DACNFs) were prepared through the periodate oxidation method, and their morphological and structural properties were investigated. The characteristics of the DACNFs during the concentration process were also explored. The AFM analysis results showed that the mean diameters of wood fiber-based CNFs and cotton fiber-based CNFs were about 52.03 nm and 69.51 nm, respectively. However, the periodate oxidation treatment process obviously reduced the nanofibril size and destroyed the crystalline region of the nanofibrils. Due to the high crystallinity of cotton fibers, the cotton fiber-based DACNFs exhibited a lower aldehyde content and suspension stability compared to the wood fiber-based DACNFs. For the concentration process of the DACNF suspension, the bound water content of the concentrated cotton fiber-based DACNFs was lowered to 0.41 g/g, which indicated that the cotton fiber-based DACNFs could have good redispersibility. Both the wood fiber-based and cotton fiber-based DACNF films showed relatively good transmittance and mechanical strength. In addition, to the cotton fiber-based DACNF films had a very low swelling ratio, and the barrier water vapor and oxygen properties of the redispersed cotton fiber-based DACNF films decreased by very little. In sum, this study has demonstrated that cotton fibers could serve as an effective alternative to wood fibers for preparing CNFs, and that cotton fiber-based DACNFs have huge application prospects in the field of packaging film materials due to their stable properties during the concentration process.

6.
Small ; 19(4): e2205867, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36433832

RESUMO

Natural polymer-based sutures have attractive cytocompatibility and degradability in surgical operations. Herein, anionic cellulose nanofibrils (ACNF) and cationic guar gum (CGG) are employed to produce nontoxic CGG/ACNF composite filament with a unique core-shell structure via interfacial polyelectrolyte complexation (IPC) spinning. The comprehensive characterization and application performance of the resultant CGG/ACNF filament as a surgical suture are thoroughly investigated in comparison with silk and PGLA (90% glycolide and 10% l-lactide) sutures in vitro and in vivo, respectively. Results show that the CGG/ACNF filament with the typical core-shell structure and nervation pattern surface exhibits a high orientation index (0.74) and good mechanical properties. The tensile strength and knotting strength of CGG/ACNF suture prepared by twisting CGG/ACNF filaments increase by 69.5%, and CGG/ACNF suture has a similar friction coefficient to silk and PGLA sutures. Moreover, CGG/ACNF suture with antibiosis and cytocompatibility exhibits better growth promotion of cells than silk suture, similar to PGLA suture in vitro. In addition, the stitching experiment of mice with the CGG/ACNF suture further confirms better healing properties and less inflammation in vivo than silk and PGLA sutures do. Hence, the CGG/ACNF suture with a simple preparation method and excellent application properties is promising in surgical operations.


Assuntos
Celulose , Seda , Camundongos , Animais , Polieletrólitos , Suturas , Resistência à Tração , Cicatrização
7.
J Appl Toxicol ; 43(1): 195-207, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36065078

RESUMO

Cellulose nanofibrils (also called cellulose nanofibers or nanofibrillated cellulose [CNFs]) are novel polymers derived from biomass with excellent physicochemical properties and various potential applications. However, the introduction of such new materials into the market requires thorough safety studies to be conducted. Recently, toxicity testing using cultured cells has attracted attention as a safety assessment that does not rely on experimental animals. This article reviews recent information regarding the cytotoxicity testing of CNFs and highlights the issues relevant to evaluating tests. In the literature, we found that a variety of cell lines and CNF exposure concentrations was evaluated. Furthermore, the results of cytotoxicity results tests differed and were not necessarily consistent. Numerous reports that we examined had not evaluated endotoxin/microbial contamination or the interaction of CNFs with the culture medium used in the tests. The following potential specific issues involved in CNF in vitro testing, were discussed: (1) endotoxin contamination, (2) microbial contamination, (3) adsorption of culture medium components to CNFs, and (4) changes in aggregation/agglomeration and dispersion states of CNFs resulting from culture medium components. In this review, the available measurement methods and solutions for these issues are also discussed. Addressing these points will lead to a better understanding of the cellular effects of CNFs and the development of safer CNFs.


Assuntos
Celulose , Nanofibras , Animais , Celulose/toxicidade , Celulose/química , Nanofibras/toxicidade , Nanofibras/química , Endotoxinas/toxicidade
8.
Part Fibre Toxicol ; 19(1): 19, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296350

RESUMO

BACKGROUND: Cellulose nanofibrils (CNFs) have emerged as a sustainable and environmentally friendly option for a broad range of applications. The fibrous nature and high biopersistence of CNFs call for a thorough toxicity assessment, but it is presently unclear which physico-chemical properties could play a role in determining the potential toxic response to CNF. Here, we assessed whether surface composition and size could modulate the genotoxicity of CNFs in human bronchial epithelial BEAS-2B cells. We examined three size fractions (fine, medium and coarse) of four CNFs with different surface chemistry: unmodified (U-CNF) and functionalized with 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) (T-CNF), carboxymethyl (C-CNF) and epoxypropyltrimethylammonium chloride (EPTMAC) (E-CNF). In addition, the source fibre was also evaluated as a non-nanosized material. RESULTS: The presence of the surface charged groups in the functionalized CNF samples resulted in higher amounts of individual nanofibrils and less aggregation compared with the U-CNF. T-CNF was the most homogenous, in agreement with its high surface group density. However, the colloidal stability of all the CNF samples dropped when dispersed in cell culture medium, especially in the case of T-CNF. CNF was internalized by a minority of BEAS-2B cells. No remarkable cytotoxic effects were induced by any of the cellulosic materials. All cellulosic materials, except the medium fraction of U-CNF, induced a dose-dependent intracellular formation of reactive oxygen species (ROS). The fine fraction of E-CNF, which induced DNA damage (measured by the comet assay) and chromosome damage (measured by the micronucleus assay), and the coarse fraction of C-CNF, which produced chromosome damage, also showed the most effective induction of ROS in their respective size fractions. CONCLUSIONS: Surface chemistry and size modulate the in vitro intracellular ROS formation and the induction of genotoxic effects by fibrillated celluloses. One cationic (fine E-CNF) and one anionic (coarse C-CNF) CNF showed primary genotoxic effects, possibly partly through ROS generation. However, the conclusions cannot be generalized to all types of CNFs, as the synthesis process and the dispersion method used for testing affect their physico-chemical properties and, hence, their toxic effects.


Assuntos
Celulose , Nanofibras , Celulose/química , Celulose/toxicidade , Ensaio Cometa , Dano ao DNA , Humanos , Nanofibras/química , Nanofibras/toxicidade , Espécies Reativas de Oxigênio
9.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499668

RESUMO

The application of silver nanoparticles (AgNPs) in antibacterial materials, glucose detection, etc., is of broad interest for researchers around the world. Nanocellulose with many excellent properties can be used as a carrier and stabilizer to assist in the synthesis of AgNPs. In this study, cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) were used to assist in the synthesis of AgNPs under the reduction of glucose and detection of glucose concentration under different conditions. Transmission electron microscopy (TEM) analysis showed that the AgNPs in the nanocellulose-AgNPs (NC-AgNPs) system were roughly spherical and randomly distributed on the nanocellulose. In the whole reaction system, when the concentration of nanocellulose is 0.11 mg/mL, the concentration of silver ammonia solution is 0.6 mM, and the mixing time is 2.5 h, according to the UV-Vis analysis, the absorbance of CNF-AgNPs at 425 nm exhibited a good linear relationship (R2 = 0.9945) with the glucose concentration range (5-50 µM), while the absorbance of CNC-AgNPs at 420 nm showed a good linear relationship (R2 = 0.9956) with the glucose concentration range (5-35 µM). The synthesis of NC-AgNPs can be further developed into a sensor with higher sensitivity and higher stability for detecting glucose concentration and a material with antibacterial effects.


Assuntos
Glucose , Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Celulose/química , Glucose/análise , Nanopartículas Metálicas/química , Prata/química
10.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566131

RESUMO

Polyoxometalate (POM) presents great potential in oxidative desulfurization (ODS) reaction. However, the high dissolubility of POM in common solvents makes it difficult to recycle. Besides, the small specific surface area of POM also limits the interaction between them and the substrate. Depositing polyoxometalates onto three-dimensional (3D) network structured materials could largely expand the application of POM. Here, the surfaces of cellulose nanofibrils (CNFs) were modified with very few (3-Aminopropyl) trimethoxysilane (APTS) to endow positive charges on the surfaces of CNFs, and then phosphotungstic acid (PTA) was loaded to obtain the aerogel A-CNF/PTA as the ODS catalyst. FT-IR indicated the successful deposition of PTA onto aminosilane modified CNF surfaces. UV-VIS further suggested the stability of PTA in the aerogels. BET and SEM results suggested the increased specific surface area and the relatively uniform 3D network structure of the prepared aerogels. TGA analysis indicated that the thermal stability of the aerogel A-CNF/PTA50% was a little higher than that of the pure CNF aerogel. Most importantly, the aerogel A-CNF/PTA50% showed good catalytic performance for ODS. Catalysis results showed that the substrate conversion rate of the aerogel A-CNF/PTA50% reached 100% within 120 min at room temperature. Even after five cycles, the substrate conversion rate of the aerogel A-CNF/PTA50% still reached 91.2% during the dynamic catalytic process. This work provides a scalable and facile way to stably deposit POM onto 3D structured materials.


Assuntos
Celulose , Nanofibras , Ânions , Celulose/química , Nanofibras/química , Estresse Oxidativo , Polieletrólitos , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Small ; 17(40): e2008200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496143

RESUMO

The combination of good stability, biocompatibility, and high mechanical strength is attractive for bio-related material applications, but it remains challenging to simultaneously achieve these properties in a single, ionically conductive material. Here a "wood" ionic cable, made of aligned wood nanofibrils, demonstrating a combination of biocompatibility, high mechanical strength, high ionic conductivity, and excellent stability is reported. The wood ionic cable possesses excellent flexibility and exhibits high tensile strength up to 260 MPa (in the dry state) and ≈80 MPa (in the wet state). The nanochannels within the highly aligned cellulose nanofibrils and the presence of negative charges on the surfaces of these nanochannels, originating from the cellulose hydroxyl groups, provide new opportunities for ion regulation at low salt concentrations. Ion regulation in turn enables the wood ionic cable to have unique nanofluidic ionic behaviors. The Na+ ion conductivity of the wood ionic cable can reach up to ≈1.5 × 10-4 S cm-1 at low Na+ ion concentration (1.0 × 10-5 mol L-1 ), which is an order of magnitude higher than that of bulk NaCl solution at the same concentration. The scalable, biocompatible wood ionic cable enables novel ionic device designs for potential ion-regulation applications.


Assuntos
Celulose , Madeira , Hidrogéis , Íons , Resistência à Tração
12.
Macromol Rapid Commun ; 42(3): e2000531, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33205506

RESUMO

Modifying the surface of cellulose nanofibrils (CNFs) produced by mechanical refinement with a variety of polymer functional groups in an entirely water-based system is challenging because only surface hydroxyl groups are accessible. To address this limitation, an entirely water-based, polymer modification scheme is developed. CNFs are functionalized with a reactive methacrylate functional group followed by subsequent grafting-through polymerization. This modification worked with a variety of water-soluble and water-insoluble (meth)acrylates and (meth)acrylamides, grafting up to 45 wt% polymer on to the CNFs. The reaction conditions introducing the methacrylate functional group are adjusted to vary the degree of functionality. Soxhlet extraction of modified samples demonstrates that the reactive methacrylate group is necessary to facilitate polymer grafting. The degree of functionalization of the polymers is studied via quantitative transmission IR spectroscopy and the morphology of the resulting cellulose nanofibrils is studied via a combination of optical, scanning electron, and atomic force microscopy. High levels of polymer modification do not significantly affect the micrometer-scale fibril morphology.


Assuntos
Celulose , Polímeros , Metacrilatos , Polimerização , Água
13.
Cellulose (Lond) ; 28(1): 241-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33132545

RESUMO

A novel biomaterial ink consisting of regenerated silk fibroin (SF) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (OBC) nanofibrils was developed for 3D printing lung tissue scaffold. Silk fibroin backbones were cross-linked using horseradish peroxide/H2O2 to form printed hydrogel scaffolds. OBC with a concentration of 7wt% increased the viscosity of inks during the printing process and further improved the shape fidelity of the scaffolds. Rheological measurements and image analyses were performed to evaluate inks printability and print shape fidelity. Three-dimensional construct with ten layers could be printed with ink of 1SF-2OBC (SF/OBC = 1/2, w/w). The composite hydrogel of 1SF-1OBC (SF/OBC = 1/1, w/w) printed at 25 °C exhibited a significantly improved compressive strength of 267 ± 13 kPa and a compressive stiffness of 325 ± 14 kPa at 30% strain, respectively. The optimized printing parameters for 1SF-1OBC were 0.3 bar of printing pressure, 45 mm/s of printing speed and 410 µm of nozzle diameter. Furthermore, OBC nanofibrils could be induced to align along the print lines over 60% degree of orientation, which were analyzed by SEM and X-ray diffraction. The orientation of OBC nanofibrils along print lines provided physical cues for guiding the orientation of lung epithelial stem cells, which maintained the ability to proliferate and kept epithelial phenotype after 7 days' culture. The 3D printed SF-OBC scaffolds are promising for applications in lung tissue engineering.

14.
J Food Sci Technol ; 58(5): 1979-1986, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33897034

RESUMO

ABSTRACT: Cashew is a major crop in several tropical countries. Its cultivation is mostly aimed to the production of cashew nuts, whereas its byproducts (including cashew tree gum and cashew apples) are underutilized. In this study, cashew tree gum (CG) has been combined to nanofibrillated bacterial cellulose (NFBC) produced from cashew apple juice, at different ratios (from CG-only to NFBC-only), to produce edible films. While the CG-only dispersion (at 1 wt%) behaved as a quasi-Newtonian fluid, the addition of NFBC provided a shear-thinning behavior, making the dispersions easier to process, especially to cast. Moreover, the films containing increasing NFBC contents exhibited better physico-mechanical performance. When compared to the CG-only film, the films containing at least 25% NFBC presented remarkably higher strength and modulus (even similar to some conventional petroleum-derived polymers), lower water vapor permeability (WVP), and lower water solubility, although at the expense of lower elongation and higher opacity values. The combined use of both polysaccharides was demonstrated to be useful to overcome the limitations of both CG-only films (very low viscosity, poor tensile properties and very high WVP) and NFBC-only films (very high viscosity, making the dispersions difficult to mix and spread). Moreover, the use of different NFBC/CG ratios allow properties to be tuned to meet specific demands for different food packaging or coating purposes.

15.
Inhal Toxicol ; 32(9-10): 388-401, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33043732

RESUMO

OBJECTIVE: The growing applications of nanocelluloses in the fields of advanced nanocomposites, electronics, and medical devices necessitate investigation of their potential adverse effects on human health. The lungs are the primary and the most important route for the entry of nanocelluloses into the human body in occupational settings. However, data on the pulmonary toxicity of cellulose nanofibrils (CNFs) and its molecular mechanism are limited. This study investigated the pulmonary toxicity of CNFs and its genomic expression using the RNA sequencing approach. MATERIALS AND METHODS: Female C57BL/6 mice were administered CNFs at 50 µg/mouse by oropharyngeal aspiration. Samples were collected at 3 and 14 days after exposure to CNFs (DAEC). RESULTS: At three DAEC, the microscopic sections of lungs revealed a significant inflammatory response. In terms of gene expression alterations, 94 genes were up-regulated, and 107 genes were down-regulated. Most of these differentially expressed genes were involved in the inflammatory and immune responses, including chemokines, NK cells, killer cell lectin-like receptors, CD antigens, T cell-specific GTPases, immunity-related GTPase family M members, and interferon-induced proteins encoding genes. However, only 9 and 26 genes at 14 DAEC were significantly up- and down-regulated, respectively. CONCLUSIONS: The pathological analysis of lung sections and the analysis of sequencing data suggested that the homeostasis of mice lungs was restored at 14 DAEC. The findings of this study provide insights into the pulmonary toxicity, and underlying toxicological mechanisms, caused by exposure to CNFs, and are useful for the assessment of the potential toxicity of nanocelluloses.


Assuntos
Celulose/toxicidade , Pulmão/efeitos dos fármacos , Nanofibras/toxicidade , Administração por Inalação , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL
16.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560428

RESUMO

With the rapid development of portable and wearable electronic devices, self-supporting flexible supercapacitors have attracted much attention, and higher requirements have been put forward for the electrode of the device, that is, it is necessary to have good mechanical properties while satisfying excellent electrochemical performance. In this work, a facile method was invented to obtain excellent self-supported flexible electrode materials with high mechanical properties and outstanding electrochemical performance by combining cellulose nanofibrils (CNFs) and reduced graphene oxide (RGO). We focused on the effect of the ratio of the addition of CNFs and the formation process of the film on the electrochemical and mechanical properties. The results show that the CNFs/RGO12 (where the ratio of CNFs to GO is 1:2) film displayed outstanding comprehensive properties; its tensile strength and conductivity were up to 83 MPa and 202.94 S/m, respectively, and its CA value was as high as 146 mF cm-2 under the current density of 5 mA cm-2. Furthermore, the initial retention rate of the specific capacitance was about 83.7% when recycled 2000 times; moreover, its capacitance did not change much after perpendicular bending 200 times. Therefore, the films prepared by this study have great potential in the field of flexible supercapacitors.


Assuntos
Celulose/química , Capacitância Elétrica , Condutividade Elétrica , Grafite/química , Membranas Artificiais , Nanofibras/química
17.
Molecules ; 25(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429191

RESUMO

As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.


Assuntos
Celulose/química , Nanofibras/química , Poliésteres/química , Polietilenoglicóis/química , Impressão Tridimensional , Celulase/química , Humanos , Hidrólise , Nanofibras/ultraestrutura , Pressão , Resistência à Tração
18.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708238

RESUMO

Polylactic acid (PLA) is one of the most promising biodegradable and recyclable thermoplastic biopolymer derived from renewable feedstock. Nanocellulose reinforced PLA biocomposites have received increasing attention in academic and industrial communities. In the present study, cellulose nanofibrils (CNFs) was liberated by combined enzymatic pretreatment and high-pressure homogenization, and then subsequently incorporated into the PLA matrix to synthesize PLA/CNF biocomposite films via solution casting and melt compression. The prepared PLA/CNF biocomposite films were characterized in terms of transparency (UV-Vis spectroscopy), chemical structure (attenuated total reflectance-Fourier transform infrared, ATR-FTIR; X-ray powder diffraction, XRD), thermal (thermogravimetric analyzer, TGA; differential scanning calorimetry, DSC), and tensile properties. With 1.0-5.0 wt % additions of CNF to the PLA matrix, noticeable improvements in thermal and physical properties were observed for the resulting PLA/CNF biocomposites. The 2.5 wt % addition of CNF increased the tensile strength by 8.8%. The Tonset (initial degradation temperature) and Tmax (maximum degradation temperature) after adding 5.0 wt % CNF was increased by 20 °C, and 10 °C, respectively in the nitrogen atmosphere. These improvements were attributed to the good dispersibility and improved interfacial interaction of CNF in the PLA matrix.


Assuntos
Celulose/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Nanofibras/química , Poliésteres/química , Poliésteres/metabolismo , Estrutura Molecular , Transição de Fase , Pressão , Relação Estrutura-Atividade , Propriedades de Superfície , Resistência à Tração , Temperatura de Transição
19.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899710

RESUMO

Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled.


Assuntos
Tecnologia Biomédica , Celulose/química , Metais/química , Nanopartículas/química , Óxidos/química , Antibacterianos/farmacologia , Celulose/ultraestrutura
20.
Molecules ; 25(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188070

RESUMO

Environmental and health concerns are driving the need for new materials in food packaging to replace poly- or perfluorinated compounds, aluminum layers, and petroleum-based polymers. Cellulose nanofibrils (CNF) have been shown by a number of groups to form excellent barrier layers to oxygen and grease. However, the influence of lignin-containing cellulose nanofibrils (LCNF) on film barrier properties has not been well reported. Herein, thin films (16 g/m2) from LCNF and CNF were formed on paper substrates through a filtration technique that should mimic the addition of material at the wet end of a paper machine. Surface, barrier and mechanical attributes of these samples were characterized. The analysis on the surface free energy and water contact angle pointed to the positive role of lignin distribution in inducing a certain degree of water repellency. The observed oxygen transmission rate (OTR) and water vapor permeability (WVP) values of LCNF-coated samples were nearly similar to those with CNF. However, the presence of lignin improved the oil proof performance; these layered designs exhibited an excellent resistance to grease (kit No. 12). The attained papers with LCNF coat were formed into bowl-like containers using metal molds and a facile oven drying protocol to evaluate their resistance to oil penetration over a longer period. The results confirmed the capability of LCNF layer in holding commercially available cooking oils with no evidence of leakage for over five months. Also, an improvement in the tensile strength and elongation at break was observed in the studied papers. Overall, the proposed packaging material possesses viable architecture and can be considered as a fully wood-based alternative for the current fluorocarbon systems.


Assuntos
Celulose/química , Embalagem de Alimentos , Lignina/química , Nanofibras/química , Óleos/química , Papel , Umidade , Nanofibras/ultraestrutura , Oxigênio/química , Tamanho da Partícula , Resistência à Tração , Termogravimetria , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA