Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260406

RESUMO

Colonially breeding birds and mammals form some of the largest gatherings of apex predators in the natural world and have provided model systems for studying mechanisms of population regulation in animals. According to one influential hypothesis, intense competition for food among large numbers of spatially constrained foragers should result in a zone of prey depletion surrounding such colonies, ultimately limiting their size. However, while indirect and theoretical support for this phenomenon, known as "Ashmole's halo," has steadily accumulated, direct evidence remains exceptionally scarce. Using a combination of vessel-based surveys and Global Positioning System tracking, we show that pelagic seabirds breeding at the tropical island that first inspired Ashmole's hypothesis do indeed deplete their primary prey species (flying fish; Exocoetidae spp.) over a considerable area, with reduced prey density detectable >150 km from the colony. The observed prey gradient was mirrored by an opposing trend in seabird foraging effort, could not be explained by confounding environmental variability, and can be approximated using a mechanistic consumption-dispersion model, incorporating realistic rates of seabird predation and random prey dispersal. Our results provide a rare view of the resource footprint of a pelagic seabird colony and reveal how aggregations of these central-place foraging, marine top predators profoundly influence the oceans that surround them.


Assuntos
Ecossistema , Comportamento Predatório/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Aves/fisiologia , Comportamento Competitivo , Comportamento Alimentar/fisiologia , Peixes/fisiologia , Ilhas
2.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728626

RESUMO

During feeding trips, central-place foragers make decisions on whether to feed at a single site, move to other sites and/or exploit different habitats. However, for many marine species, the lack of fine-resolution data on foraging behaviour and success has hampered our ability to test whether individuals follow predictions of the optimal foraging hypothesis. Here, we tested how benthic foraging habitat usage, time spent at feeding sites and probability of change of feeding sites affected feeding rates in European shags (Gulosus aristotelis) using time-depth-acceleration data loggers in 24 chick-rearing males. Foraging habitat (rocky or sandy) was identified from characteristic differences in dive patterns and body angle. Increase in body mass was estimated from changes in wing stroke frequency during flights. Bout feeding rate (increase in body mass per unit time of dive bout) did not differ between rocky and sandy habitats, or in relation to the order of dive bouts during trips. Bout feeding rates did not affect the duration of flight to the next feeding site or whether the bird switched habitat. However, the likelihood of a change in habitat increased with the number of dive bouts within a trip. Our findings that shags did not actively move further or switch habitats after they fed at sites of lower quality are in contrast to the predictions of optimal foraging theory. Instead, it would appear that birds feed probabilistically in habitats where prey capture rates vary as a result of differences in prey density and conspecific competition or facilitation.


Assuntos
Mergulho , Comportamento Alimentar , Humanos , Masculino , Animais , Ecossistema , Galinhas , Probabilidade
3.
Proc Biol Sci ; 289(1981): 20220895, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043278

RESUMO

To increase the probability of detecting odour plumes, and so increase prey capture success, when winds are stable central place foraging seabirds should fly crosswind to maximize the round-trip distance covered. At present, however, there is no empirical evidence of this theoretical prediction. Here, using an extensive GPS tracking dataset, we investigate, for the first time, the foraging movements of Bulwer's petrels (Bulweria bulwerii) in the persistent North Atlantic trade winds. To test the hypotheses that, in stable winds, petrels use crosswind to maximize both the distance covered and the probability of detecting olfactory cues, we combine state-space models, generalized additive models and Gaussian plume models. Bulwer's petrels had the highest degree of selectivity for crosswinds documented to date, often leading to systematic zig-zag flights. Crosswinds maximized both the distance travelled and the probability of detecting odour plumes integrated across the round-trip (rather than at any given point along the route, which would result in energetically costly return flight). This evidence suggests that petrels plan round-trip flights at departure, integrating expected costs of homeward journeys. Our findings, which are probably true for other seabirds in similar settings, further highlight the critical role of wind in seabird foraging ecology.


Assuntos
Aves , Comportamento Alimentar , Animais , Sinais (Psicologia) , Olfato , Vento
4.
Oecologia ; 199(1): 13-26, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35044501

RESUMO

Foraging spatial segregation is frequent in central-place foragers during the breeding season, but very few studies have investigated foraging spatial segregation between adjacent sub-colonies. Here, we assessed for within-colony differences in the at-sea distribution, habitat use, trophic ecology and chick growth data of two Calonectris colonies differing in size, and breeding in two different environments in the North Atlantic Ocean. For this, we GPS tracked 52 Cory's shearwaters (Calonectris borealis) breeding in 2 small sub-colonies at Berlenga Island (Portugal) and 59 Cape Verde shearwaters (Calonectris edwardsii) breeding in 2 sub-colonies differing greatly in size at Raso Islet (Cabo Verde), over 2 consecutive breeding seasons (2017-2018), during chick-rearing. Cory's shearwaters from the two sub-colonies at Berlenga Island broadly overlapped in repeatedly used foraging patches close to the colony. In contrast, the foraging distribution of Cape Verde shearwaters was partially segregated in the colony surroundings, but overlapped at distant foraging areas off the west coast of Africa. Despite spatial segregation close to the colony, Cape Verde shearwaters from both sub-colonies departed in similar directions, foraged in similar habitats and exhibited mostly short trips within the archipelago of Cabo Verde. These results, corroborated with similar trophic ecology and chick growth rates between sub-colonies, support the idea that foraging spatial segregation in the colony surroundings was not likely driven by interference competition or directional bias. We suggest that high-quality prey patches are able to shape travel costs and foraging distribution of central-place foragers from neighbouring sub-colonies.


Assuntos
Aves , Ecologia , Animais , Oceano Atlântico , Ecossistema , Estações do Ano
5.
Am Nat ; 198(2): E37-E52, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260868

RESUMO

AbstractCentral place foragers often segregate in space, even without signs of direct agonistic interactions. Using parsimonious individual-based simulations, we show that for species with spatial cognitive abilities, individual-level memory of resource availability can be sufficient to cause spatial segregation in the foraging ranges of colonial animals. The shapes of the foraging distributions are governed by commuting costs, the emerging distribution of depleted resources, and the fidelity of foragers to their colonies. When colony fidelity is weak and foragers can easily switch to colonies located closer to favorable foraging grounds, this leads to space partitioning with equidistant borders between neighboring colonies. In contrast, when colony fidelity is strong-for example, because larger colonies provide safety in numbers or individuals are unable to leave-it can create a regional imbalance between resource requirements and resource availability. This leads to nontrivial space-use patterns that propagate through the landscape. Interestingly, while better spatial memory creates more defined boundaries between neighboring colonies, it can lower the average intake rate of the population, suggesting a potential trade-off between an individual's attempt for increased intake and population growth rates.


Assuntos
Ecossistema , Comportamento Alimentar , Animais , Humanos
6.
J Anim Ecol ; 90(10): 2404-2420, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091891

RESUMO

Sexual competition is increasingly recognized as an important selective pressure driving species distributions. However, few studies have investigated the relative importance of interpopulation versus intrapopulation competition in relation to habitat availability and selection. To explain spatial segregation between sexes that often occurs in non-territorial and central place foragers, such as seabirds, two hypotheses are commonly used. The 'competitive exclusion' hypothesis states that dominant individuals should exclude subordinate individuals through direct competition, whereas the 'niche divergence' hypothesis states that segregation occurs due to past competition and habitat specialization. We tested these hypotheses in two populations of an extreme wide-ranging and sexually dimorphic seabird, investigating the relative role of intrapopulation and interpopulation competition in influencing sex-specific distribution and habitat preferences. Using GPS loggers, we tracked 192 wandering albatrosses Diomedea exulans during four consecutive years (2016-2019), from two neighbouring populations in the Southern Ocean (Prince Edward and Crozet archipelagos). We simulated pseudo-tracks to create a null spatial distribution and used Kernel Density Estimates (KDE) and Resource Selection Functions (RSF) to distinguish the relative importance of within- versus between-population competition. Kernel Density Estimates showed that only intrapopulation sexual segregation was significant for each monitoring year, and that tracks between the two colonies resulted in greater overlap than expected from the null distribution, especially for the females. RSF confirmed these results and highlighted key at-sea foraging areas, even if the estimated of at-sea densities were extremely low. These differences in selected areas between sites and sexes were, however, associated with high interannual variability in habitat preferences, with no clear specific preferences per site and sex. Our results suggest that even with low at-sea population densities, historic intrapopulation competition in wide-ranging seabirds may have led to sexual dimorphism and niche specialization, favouring the 'niche divergence' hypothesis. In this study, we provide a protocol to study competition within as well as between populations of central place foragers. This is relevant for understanding their distribution patterns and population regulation, which could potentially improve management of threatened populations.


Assuntos
Aves , Comportamento Alimentar , Animais , Ecossistema , Feminino , Masculino , Densidade Demográfica , Caracteres Sexuais
7.
Proc Biol Sci ; 287(1932): 20201063, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783522

RESUMO

Animals across vertebrate taxa form social communities and often exist as fission-fusion groups. Central place foragers (CPF) may form groups from which they will predictably disperse to forage, either individually or in smaller groups, before returning to fuse with the larger group. However, the function and stability of social associations in predatory fish acting as CPFs is unknown, as individuals do not need to return to a shelter yet show fidelity to core areas. Using dynamic social networks generated from acoustic tracking data, we document spatially structured sociality in CPF grey reef sharks at a Pacific Ocean atoll. We show that sharks form stable social groups over multiyear periods, with some dyadic associations consistent for up to 4 years. Groups primarily formed during the day, increasing in size throughout the morning before sharks dispersed from the reef at night. Our simulations suggest that multiple individuals sharing a central place and using social information while foraging (i.e. local enhancement) will outperform non-CPF social foragers. We show multiyear social stability in sharks and suggest that social foraging with information transfer could provide a generalizable mechanism for the emergence of sociality with group central place foraging.


Assuntos
Tubarões/fisiologia , Comportamento Social , Acústica , Animais , Recifes de Corais , Ecossistema , Oceano Pacífico
8.
Front Zool ; 17: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088333

RESUMO

BACKGROUND: Explanations for the ecological dominance of ants generally focus on the benefits of division of labour and cooperation during foraging. However, the principal innovation of ants relative to their wasp ancestors was the evolution of a new phenotype: a wingless worker caste optimized for ground labour. Ant workers are famous for their ability to lift and carry heavy loads, but we know surprisingly little about the morphological basis of their strength. Here we examine the consequences of the universal loss of flight in ant workers on skeletomuscular adaptations in the thorax for enhanced foraging on six legs. RESULTS: Using X-ray microcomputed tomography and 3D segmentation, we compared winged queens and wingless workers in Euponera sikorae (subfamily Ponerinae) and Cataglyphis savignyi (subfamily Formicinae). Workers are characterized by five major changes to their thorax: i) fusion of the articulated flight thorax (queens) into a rigid box optimized to support the muscles that operate the head, legs and abdomen, ii) redesign of internal cuticular structures for better bracing and muscle attachment, iii) substantial enlargement of the neck muscles for suspending and moving the head, iv) lengthening of the external trochanter muscles, predominant for the leg actions that lift the body off the ground, v) modified angle of the petiole muscles that are key for flexion of the abdomen. We measured volumes and pennation angles for a few key muscles to assess their increased efficacy. Our comparisons of additional workers across five genera in subfamilies Dorylinae and Myrmicinae show these modifications in the wingless thorax to be consistent. In contrast, a mutillid wasp showed a different pattern of muscle adaptations resulting from the lack of wing muscles. CONCLUSIONS: Rather than simply a subtraction of costly flight muscles, we propose the ant worker thorax evolved into a power core underlying stronger mandibles, legs, and sting. This contrasts with solitary flightless insects where the lack of central place foraging generated distinct selective pressures for rearranging the thorax. Stronger emphasis is needed on morphological innovations of social insects to further our understanding of the evolution of social behaviours.

9.
J Anim Ecol ; 87(4): 1116-1125, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29577275

RESUMO

Human activities can influence the movement of organisms, either repelling or attracting individuals depending on whether they interfere with natural behavioural patterns or enhance access to food. To discern the processes affecting such interactions, an appropriate analytical approach must reflect the motivations driving behavioural decisions at multiple scales. In this study, we developed a modelling framework for the analysis of foraging trips by central place foragers. By recognising the distinction between movement phases at a larger scale and movement steps at a finer scale, our model can identify periods when animals are actively following moving attractors in their landscape. We applied the framework to GPS tracking data of northern fulmars Fulmarus glacialis, paired with contemporaneous fishing boat locations, to quantify the putative scavenging activity of these seabirds on discarded fish and offal. We estimated the rate and scale of interaction between individual birds and fishing boats and the interplay with other aspects of a foraging trip. The model classified periods when birds were heading out to sea, returning towards the colony or following the closest boat. The probability of switching towards a boat declined with distance and varied depending on the phase of the trip. The maximum distance at which a bird switched towards the closest boat was estimated around 35 km, suggesting the use of olfactory information to locate food. Individuals spent a quarter of a foraging trip, on average, following fishing boats, with marked heterogeneity among trips and individuals. Our approach can be used to characterise interactions between central place foragers and different anthropogenic or natural stimuli. The model identifies the processes influencing central place foraging at multiple scales, which can improve our understanding of the mechanisms underlying movement behaviour and characterise individual variation in interactions with a range of human activities that may attract or repel these species. Therefore, it can be adapted to explore the movement of other species that are subject to multiple dynamic drivers.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Movimento , Percepção Olfatória , Animais , Ecossistema , Modelos Biológicos
10.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446699

RESUMO

Collective foraging confers benefits in terms of reduced predation risk and access to social information, but it heightens local competition when resources are limited. In social insects, resource limitation has been suggested as a possible cause for the typical decrease in per capita productivity observed with increasing colony size, a phenomenon known as Michener's paradox. Polydomy (distribution of a colony's brood and workers across multiple nests) is believed to help circumvent this paradox through its positive effect on foraging efficiency, but there is still little supporting evidence for this hypothesis. Here, we show experimentally that polydomy enhances the foraging performance of food-deprived Temnothorax nylanderi ant colonies via several mechanisms. First, polydomy influences task allocation within colonies, resulting in faster retrieval of protein resources. Second, communication between sister nests reduces search times for far away resources. Third, colonies move queens, brood and workers across available nest sites in response to spatial heterogeneities in protein and carbohydrate resources. This suggests that polydomy represents a flexible mechanism for space occupancy, helping ant colonies adjust to the environment.


Assuntos
Formigas/fisiologia , Comportamento Apetitivo , Comportamento Social , Animais , Feminino , Alimentos , Comportamento Predatório
11.
Ecology ; 98(7): 1932-1944, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470722

RESUMO

The behavior of colony-based marine predators is the focus of much research globally. Large telemetry and tracking data sets have been collected for this group of animals, and are accompanied by many empirical studies that seek to segment tracks in some useful way, as well as theoretical studies of optimal foraging strategies. However, relatively few studies have detailed statistical methods for inferring behaviors in central place foraging trips. In this paper we describe an approach based on hidden Markov models, which splits foraging trips into segments labeled as "outbound", "search", "forage", and "inbound". By structuring the hidden Markov model transition matrix appropriately, the model naturally handles the sequence of behaviors within a foraging trip. Additionally, by structuring the model in this way, we are able to develop realistic simulations from the fitted model. We demonstrate our approach on data from southern elephant seals (Mirounga leonina) tagged on Kerguelen Island in the Southern Ocean. We discuss the differences between our 4-state model and the widely used 2-state model, and the advantages and disadvantages of employing a more complex model.


Assuntos
Comportamento Alimentar , Focas Verdadeiras/fisiologia , Animais , Ecologia , Telemetria
12.
J Theor Biol ; 416: 52-67, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28063843

RESUMO

Recent advances in animal tracking have allowed us to uncover the drivers of movement in unprecedented detail. This has enabled modellers to construct ever more realistic models of animal movement, which aid in uncovering detailed patterns of space use in animal populations. Partial differential equations (PDEs) provide a popular tool for mathematically analysing such models. However, their construction often relies on simplifying assumptions which may greatly affect the model outcomes. Here, we analyse the effect of various PDE approximations on the analysis of some simple movement models, including a biased random walk, central-place foraging processes and movement in heterogeneous landscapes. Perhaps the most commonly-used PDE method dates back to a seminal paper of Patlak from 1953. However, our results show that this can be a very poor approximation in even quite simple models. On the other hand, more recent methods, based on transport equation formalisms, can provide more accurate results, as long as the kernel describing the animal's movement is sufficiently smooth. When the movement kernel is not smooth, we show that both the older and newer methods can lead to quantitatively misleading results. Our detailed analysis will aid future researchers in the appropriate choice of PDE approximation for analysing models of animal movement.


Assuntos
Migração Animal/fisiologia , Modelos Teóricos , Animais , Comportamento Animal/fisiologia , Métodos , Modelos Biológicos
13.
Ecol Appl ; 27(7): 2074-2091, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28653410

RESUMO

Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the distribution at sea of each species at both the colony and regional level. Space use by all four species' British breeding populations is concentrated in the coastal waters of Scotland, highlighting the need for robust conservation measures in this area. The techniques we present are applicable to any CCPF.


Assuntos
Distribuição Animal , Aves/fisiologia , Comportamento Alimentar , Comportamento de Nidação , Animais , Charadriiformes/fisiologia , Irlanda , Modelos Biológicos , Densidade Demográfica , Reino Unido
14.
J Anim Ecol ; 86(6): 1425-1433, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28692168

RESUMO

Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores.


Assuntos
Braquiúros/fisiologia , Ecossistema , Herbivoria , Animais , Belize , Besouros/fisiologia , Modelos Biológicos , Áreas Alagadas
15.
Ecology ; 97(10): 2729-2739, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859117

RESUMO

Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes.


Assuntos
Recifes de Corais , Ecossistema , Animais , Ecologia , Peixes , Comportamento Predatório
16.
Behav Ecol ; 34(5): 769-779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744167

RESUMO

In many seabird species, parents feeding young switch between short and long foraging excursions in a strategy known as "dual foraging." To investigate whether habitat quality near breeding colonies drives the use of dual foraging, we conducted a review of the seabird literature, compiling the results of 102 studies which identified dual-foraging in 50 species across nine families from all six seabird orders. We estimated the mean distance from the colony of each species' short and long foraging trips and obtained remote-sensed data on chlorophyll-a concentrations within the radius of both short and long trips around each colony. We then assessed, for each seabird family, the relationship between the use of dual foraging strategies and the difference in the quality of foraging locations between short- and long-distance foraging trips. We found that the probability of dual foraging grew with increasing differences in the quality of foraging locations available during short- and long-distance trips. We also found that when controlling for differences in habitat quality, albatrosses and penguins were less likely to use dual foraging than Procellariidae, which in turn were less likely to use dual foraging than Sulids. This study helps clarify how environmental conditions and taxon-specific characteristics influence seabird foraging behavior.

17.
Ecology ; 103(11): e3809, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792515

RESUMO

Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life-history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation.


Assuntos
Comportamento Apetitivo , Abelhas , Tamanho Corporal , Comportamento Social , Animais , Abelhas/anatomia & histologia , Abelhas/fisiologia , Biodiversidade , Tamanho Corporal/fisiologia , Ecologia , Ecossistema , Comportamento Apetitivo/fisiologia
18.
Ecol Evol ; 12(5): e8899, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600682

RESUMO

Herbivore species can either hinder or accelerate the invasion of woody species through selective utilization. Therefore, an exploration of foraging decisions can contribute to the understanding and forecasting of woody plant invasions. Despite the large distribution range and rapidly growing abundance of beaver species across the Northern Hemisphere, only a few studies focus on the interaction between beavers and invasive woody plants.We collected data on the woody plant supply and utilization at 20 study sites in Hungary, at two fixed distances from the water. The following parameters were registered: taxon, trunk diameter, type of utilization, and carving depth. Altogether 5401 units (trunks and thick branches) were identified individually. We developed a statistical protocol that uses a dual approach, combining whole-database and transect-level analyses to examine foraging strategy.Taxon, diameter, and distance from water all had a significant effect on foraging decisions. The order of preference for the four most abundant taxa was Populus spp. (softwood), Salix spp. (softwood), Fraxinus pennsylvanica (invasive hardwood), and Acer negundo (invasive hardwood). The diameter influenced the type of utilization, as units with greater diameter were rather carved or debarked than felled. According to the central-place foraging strategy, the intensity of the foraging decreased with the distance from the water, while both the taxon and diameter selectivity increased. This suggests stronger modification of the woody vegetation directly along the waterbank, together with a weaker impact further from the water.In contrast to invasive trees, for which utilization occurred almost exclusively in the smallest diameter class, even the largest softwood trees were utilized by means of carving and debarking. This may lead to the gradual loss of softwoods or the transformation of them into shrubby forms. After the return of the beaver, mature stages of softwood stands and thus the structural heterogeneity of floodplain woody vegetation could be supported by the maintenance of sufficiently large active floodplains.The beaver accelerates the shift of the canopy layer's species composition toward invasive hardwood species, supporting the enemy release hypothesis. However, the long-term impact will also depend on how plants respond to different types of utilization and on their ability to regenerate, which are still unexplored issues in this environment. Our results should be integrated with knowledge about factors influencing the competitiveness of the studied native and invasive woody species to support floodplain conservation and reconstruction.

19.
Curr Biol ; 32(17): 3800-3807.e3, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35870447

RESUMO

Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1-4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world's most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole's halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole's version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.


Assuntos
Charadriiformes , Animais , Ecossistema , Dinâmica Populacional , Reprodução
20.
Ecol Evol ; 11(9): 4428-4441, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976820

RESUMO

Substantial variation in foraging strategies can exist within populations, even those typically regarded as generalists. Specializations arise from the consistent exploitation of a narrow behavioral, spatial or dietary niche over time, which may reduce intraspecific competition and influence adaptability to environmental change. However, few studies have investigated whether behavioral consistency confers benefits at the individual and/or population level. While still recovering from commercial sealing overexploitation, Australian fur seals (AUFS; Arctocephalus pusillus doriferus) represent the largest marine predator biomass in south-eastern Australia. During lactation, female AUFS adopt a central-place foraging strategy and are, thus, vulnerable to changes in prey availability. The present study investigated the population-level repeatability and individual consistency in foraging behavior of 34 lactating female AUFS at a south-east Australian breeding colony between 2006 and 2019. Additionally, the influence of individual-level behavioral consistency on indices of foraging success and efficiency during benthic diving was determined. Low to moderate population-level repeatability was observed across foraging behaviors, with the greatest repeatability in the mean bearing and modal dive depth. Individual-level consistency was greatest for the proportion of benthic diving, total distance travelled, and trip duration. Indices of benthic foraging success and efficiency were positively influenced by consistency in the proportion of benthic diving, trip duration and dive rate but not influenced by consistency in bearing to most distal point, dive depth or foraging site fidelity. The results of the present study provide evidence of the benefits of consistency for individuals, which may have flow-on effects at the population level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA