Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 239, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014298

RESUMO

BACKGROUND: Metal ions play vital roles in regulating various biological systems, making it essential to control the concentration of free metal ions in solutions during experimental procedures. Several software applications exist for estimating the concentration of free metals in the presence of chelators, with MaxChelator being the easily accessible choice in this domain. This work aimed at developing a Python version of the software with arbitrary precision calculations, extensive new features, and a user-friendly interface to calculate the free metal ions. RESULTS: We introduce the open-source PyChelator web application and the Python-based Google Colaboratory notebook, PyChelator Colab. Key features aim to improve the user experience of metal chelator calculations including input in smaller units, selection among stability constants, input of user-defined constants, and convenient download of all results in Excel format. These features were implemented in Python language by employing Google Colab, facilitating the incorporation of the calculator into other Python-based pipelines and inviting the contributions from the community of Python-using scientists for further enhancements. Arbitrary-precision arithmetic was employed by using the built-in Decimal module to obtain the most accurate results and to avoid rounding errors. No notable differences were observed compared to the results obtained from the PyChelator web application. However, comparison of different sources of stability constants showed substantial differences among them. CONCLUSIONS: PyChelator is a user-friendly metal and chelator calculator that provides a platform for further development. It is provided as an interactive web application, freely available for use at https://amrutelab.github.io/PyChelator , and as a Python-based Google Colaboratory notebook at https://colab. RESEARCH: google.com/github/AmruteLab/PyChelator/blob/main/PyChelator_Colab.ipynb .


Assuntos
Quelantes , Internet , Metais , Software , Quelantes/química , Metais/química
2.
Chemistry ; 30(45): e202401987, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820179

RESUMO

A new type of diborate clathrochelate (cage) ligand featuring nine inwardly pointing nitrogen donors that form a large, rigid cavity, termed a mausolate, is presented. The cavity size and high denticity make this an attractive delivery vehicle for large radionuclides in nuclear medicine. Metal mausolate complexes are stable to air and water (neutral pH) and display extremely high thermal stability (>400 °C). Lanthanide uptake by the mausolate ligand occurs rapidly in solution at room temperature and once complexed, the lanthanide ions are not displaced by a 250-fold excess of a competitive lanthanide salt over more than one week.

3.
Anal Biochem ; 690: 115525, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554995

RESUMO

Three thioflavin T (ThT) derivatives, namely ThT/ethylenediaminetetraacetic acid conjugates (E1T, E2T, and E1T1P), were designed and synthesized as sensing components for divalent metal ion detection. Furthermore, these ThT derivatives were used to design lantern-type G-quadruplex (G4) fluorescent sensors. The fluorescence intensities of the ThT derivatives decreased by 1.2- to 5.6-folds in the presence of Ni2+ and Cu2+, respectively, regardless of the topology of the utilized G4. Conversely, when Mn2+ and Zn2+ coexisted in antiparallel G4, the fluorescence intensities of E2T increased to approximately 3.3- and 2.3-folds, respectively, depending on the concentration of the divalent metal ion, allowing for quantitative analyses. The Job plot analysis revealed that the binding ratio of G4 and E2T changed from 2:1 to 1:2 with the increasing concentration of the divalent metal ions. These results indicated that the basic principle of such a lantern-type G4 sensor can be applied to the detection of divalent metal ions and other types of targets, such as proteins, and small molecules via ThT derivatization.

4.
Environ Sci Technol ; 58(27): 11970-11987, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38913808

RESUMO

Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.


Assuntos
Dióxido de Carbono , Solo , Solo/química , Quelantes de Ferro , Ferro/metabolismo , Sideróforos , Microbiologia do Solo
5.
Bioorg Chem ; 146: 107261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460336

RESUMO

With increasing evidence that ferroptosis is associated with diverse neurological disorders, targeting ferroptosis offers a promising avenue for developing effective pharmaceutical agents for neuroprotection. In this study, we identified ferroptosis inhibitors as neuroprotective agents from US Food and Drug Administration (FDA)-approved drugs. 1176 drugs have been screened against erastin-induced ferroptosis in HT22 cells, resulting in 89 ferroptosis inhibitors. Among them, 26 drugs showed significant activity with EC50 below10 µM. The most active ferroptosis inhibitor is lumateperone tosylate at nanomolar level. 11 drugs as ferroptosis inhibitors were not reported previously. Further mechanistic studies revealed that their mechanisms of actions involve free radical scavenging, Fe2+ chelation, and 15-lipoxygenase inhibition. Notably, the active properties of some drugs were firstly revealed here. These ferroptosis inhibitors increase the chemical diversity of ferroptosis inhibitors, and offer new therapeutic possibilities for the treatments of related neurological diseases.


Assuntos
Ferroptose , Fármacos Neuroprotetores , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Estados Unidos , Humanos
6.
Mol Divers ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733433

RESUMO

The avidity of cancer cells for iron highlights the potential for iron chelators to be used in cancer therapy. Herein, we designed and synthesized a novel series of 5H-[1,2,4]triazino[5,6-b]indole derivatives bearing a pyridinocycloalkyl moiety using a ring-fusion strategy based on the structure of an iron chelator, VLX600. The antiproliferative activity evaluation against cancer cells and normal cells led to the identification of compound 3k, which displayed the strongest antiproliferative activity in vitro against A549, MCF-7, Hela and HepG-2 with IC50 values of 0.59, 0.86, 1.31 and 0.92 µM, respectively, and had lower cytotoxicity against HEK293 than VLX600. Further investigations revealed that unlike VLX600, compound 3k selectively bound to ferrous ions, but not to ferric ions, and addition of Fe2+ abolished the cytotoxicity of 3k. Flow cytometry assays demonstrated that 3k arrested the cell cycle at the G1 phase and induced significant apoptosis in A549 cells in dose and time-dependent manners, corresponding to JC-1 staining assay results. Western blot analysis of Bcl-2, Bax and cleaved caspase-3 proteins further provided evidences that induction of apoptosis by 3k in A549 cells might be at least via the mitochondria pathway. These above results highlight that 3k is a valuable lead compound that deserves further investigation as an iron chelator for the treatment of cancer.

7.
Clin Oral Investig ; 28(7): 365, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849637

RESUMO

OBJECTIVES: Currently, premixed putty-type bioceramic cements (PPBCs) have become popular materials for root-end fillings. This study investigated three root-end filling techniques using PPBCs and calcium silicate-based sealers including EDTA pretreatment. MATERIALS AND METHODS: Ninety root segments were prepared and standardized with an artificial fin and lateral canal, and assigned to three groups (n = 30). Root-end fillings were placed using BC-RRM Putty alone (Group PA), injection of BC sealer followed by BC-RRM Putty (Lid Technique: Group LT) or BC-RRM Putty with BC sealer coating (Deep putty packing technique: Group DP). Half of each group was pretreated with 17% EDTA. The radiographic images of the specimens were assessed by five graders and push-out bond strength tests were conducted. The data were analyzed with a general linear model including two-way ANOVA and chi-square test at a significance level of 5%. RESULTS: DP approach demonstrated significantly higher bond strength than LT (P < 0.05). However, there was no statistically significant difference in bond strength between PA and either DP or LT. EDTA pretreatment had no significant effect on push-out bond strength. Radiographically, for the main canal, PA and DP scored significantly higher than LT. In the fin, PA scored significantly higher than others (P < 0.05). CONCLUSION: Our study highlights variations in root-end filling techniques. Injecting a bulk of bioceramic sealer before the placement of PPBCs may reduce bond strength and radiopacity. The application of PPBCs alone or in the deep putty technique demonstrates potential for favorable outcomes. EDTA pretreatment did not enhance bond-strength. CLINICAL RELEVANCE: Careful selection and application of bioceramic materials and techniques in root-end fillings may influence the outcome of endodontic root-end surgery. When PPBCs and calcium silicate-based sealers are used together for root-end fillings, sealer followed by deep putty application may offer improved bond strength and radiographic fill compared to the lid technique.


Assuntos
Compostos de Cálcio , Teste de Materiais , Materiais Restauradores do Canal Radicular , Silicatos , Materiais Restauradores do Canal Radicular/química , Silicatos/química , Compostos de Cálcio/química , Técnicas In Vitro , Humanos , Colagem Dentária/métodos , Cerâmica/química , Cimentos Dentários/química , Obturação Retrógrada/métodos , Ácido Edético/química , Análise do Estresse Dentário
8.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542479

RESUMO

The few commercially available chemosensors and published probes for in vitro Zn2+ detection in two-photon microscopy are compromised by their flawed spectroscopic properties, causing issues in selectivity or challenging multistep syntheses. Herein, we present the development of an effective small molecular GFP chromophore-based fluorescent chemosensor with a 2,2'-bipyridine chelator moiety (GFZnP BIPY) for Zn2+ detection that has straightforward synthesis and uncompromised properties. Detailed experimental characterizations of the free and the zinc-bound compounds within the physiologically relevant pH range are presented. Excellent photophysical characteristics are reported, including a 53-fold fluorescence enhancement with excitation and emission maxima at 422 nm and 492 nm, respectively. A high two-photon cross section of 3.0 GM at 840 nm as well as excellent metal ion selectivity are reported. In vitro experiments on HEK 293 cell culture were carried out using two-photon microscopy to demonstrate the applicability of the novel sensor for zinc bioimaging.


Assuntos
2,2'-Dipiridil , Compostos Heterocíclicos , Humanos , Células HEK293 , Microscopia de Fluorescência , Quelantes , Zinco , Corantes Fluorescentes/química , Espectrometria de Fluorescência
9.
Int J Cosmet Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134925

RESUMO

BACKGROUND: Use of permanent hair dyes causes unintended oxidative damage during the short time frame of the dyeing process that leads to perceivable changes in the feel, manageability and appearance of hair. Moreover, after hair has been dyed, regular exposure to the sun as a key environmental stressor continues to stimulate additional oxidative damage and to induce newly developed hair colours to fade prematurely or undergo changes in colour quality. OBJECTIVE: To document the utility of acetyl zingerone methyl ether (MAZ) as a newly designed haircare ingredient to afford extra protection against oxidative damage and safeguard the integrity of hair colour. RESULTS: We demonstrate that MAZ is compatible chemically with the high alkaline conditions required for the colouring process and from theoretical calculations preferentially binds Fe and Cu ions relative to Ca or Zn ions. In model Fenton reactions MAZ effectively chelated active redox metals (Fe and Cu ions) in the presence of excess Ca+2 ions to inhibit the production of hydroxyl radicals, and in separate studies, MAZ neutralized singlet oxygen with greater efficiency than α-tocopherol by a factor of 2.5. When mixed into permanent dyes prior to hair tress application, MAZ significantly reduced combing forces, and SEM images led to substantial reductions in visual signs of surface damage. In a 28-day clinical study, relative to controls, mixing MAZ into hair dyes prior to application interfered neither with colour development nor with ability to cover grey hair and led to significant improvements in perceived attributes associated with hair's condition immediately following the dyeing process. Over a 28-day maintenance phase, especially between Day 14 and Day 28, continued use of shampoo and conditioner containing MAZ significantly preserved gloss measurements and hair colour in terms of longevity and colour quality as remaining desired and fresh compared to use of control shampoo and conditioner. CONCLUSION: This work establishes MAZ as a next-generation hair care ingredient for use in permanent dyes to attenuate oxidative damage and in shampoos and conditioners to promote longevity of hair colour and to maintain overall health and appearance of hair on a daily basis.


CONTEXTE: L'utilisation de colorants capillaires permanents provoque des dommages oxydatifs involontaires pendant la courte période du processus de teinture, ce qui entraîne des changements perceptibles dans la texture, la maniabilité et l'aspect des cheveux. De plus, après la teinture des cheveux, une exposition régulière au soleil comme facteur de stress environnemental clé continue de stimuler des dommages oxydatifs supplémentaires et d'induire une décoloration prématurée des nouvelles couleurs de cheveux ou des changements dans la qualité de la couleur. OBJECTIF: Documenter l'utilité de l'éther méthylique d'acétyl zingérone (MAZ) en tant qu'ingrédient de soin capillaire nouvellement conçu pour offrir une protection supplémentaire contre les dommages oxydatifs et sauvegarder l'intégrité de la couleur des cheveux. RÉSULTATS: Nous démontrons que le MAZ est chimiquement compatible avec les conditions alcalines élevées requises pour le processus de coloration et, d'après les calculs théoriques, lie de préférence les ions Fe et Cu aux ions Ca ou Zn. Dans les réactions de Fenton, le MAZ chélate efficacement les métaux redox actifs (atomes de Fe et de Cu) en présence d'un excès d'ions Ca+2 pour inhiber la production de radicaux hydroxyles et, dans des études séparées, le MAZ neutralise l'oxygène seul avec une efficacité supérieure à celle de l'α­tocophérol, d'un facteur de 2.5. Lorsqu'il est mélangé à des teintures permanentes avant l'application de la coiffure, le MAZ réduit de manière significative les forces de peignage et, d'après les images SEM, conduit à des réductions substantielles des signes visuels de dommages à la surface. Dans une étude clinique de 28 jours, le mélange de MAZ dans les teintures capillaires avant l'application n'interfère pas avec le développement de la couleur ni avec la capacité à couvrir les cheveux gris et conduit à des améliorations significatives des attributs perçus associés à l'état des cheveux immédiatement après le processus de teinture. Au cours d'une phase d'entretien de 28 jours, en particulier entre le 14ème et le 28ème jour, l'utilisation continue du shampooing et de l'après­shampooing contenant du MAZ a permis de préserver de manière significative les mesures de brillance et la couleur des cheveux en termes de longévité et de qualité de la couleur, qui reste telle que désirée et nette, par rapport à l'utilisation du shampooing et de l'après­shampooing de contrôle. CONCLUSION: Ces travaux font du MAZ un ingrédient de nouvelle génération pour les soins capillaires, à utiliser dans les teintures permanentes pour atténuer les dommages oxydatifs et dans les shampooings, et après­shampooings pour promouvoir la longévité de la couleur des cheveux et maintenir la santé et l'apparence générales des cheveux au quotidien.

10.
Angew Chem Int Ed Engl ; : e202410233, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030817

RESUMO

The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3- selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50:50 and 75:25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95:5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.

11.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138961

RESUMO

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Assuntos
Quelantes , Neoplasias , Humanos , Camundongos , Animais , Quelantes/uso terapêutico , Radioisótopos/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/uso terapêutico , Distribuição Tecidual , Antígeno B7-H1 , Desferroxamina/uso terapêutico , Neoplasias/tratamento farmacológico , Zircônio/farmacocinética , Linhagem Celular Tumoral
12.
Front Mol Biosci ; 11: 1364261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572444

RESUMO

Chronic liver diseases are complications of thalassemia with iron overload. Iron chelators are required to remove excessive iron, and antioxidants are supplemented to diminish harmful reactive oxygen species (ROS), purposing to ameliorate oxidative liver damage and dysfunctions. The deferiprone-resveratrol hybrid (DFP-RVT) is a synthetic iron chelator possessing anti-ß-amyloid peptide aggregation, anti-malarial activity, and hepatoprotection in plasmodium-infected mice. The study focuses on investigating the antioxidant, cytotoxicity, iron-chelating, anti-lipid peroxidation, and antioxidant defense properties of DFP-RVT in iron-loaded human hepatocellular carcinoma (Huh7) cells. In the findings, DFP-RVT dose dependently bound Fe(II) and Fe(III) and exerted stronger ABTS•- and DPPH•-scavenging (IC50 = 8.0 and 164 µM, respectively) and anti-RBC hemolytic activities (IC50 = 640 µM) than DFP but weaker than RVT (p < 0.01). DFP-RVT was neither toxic to Huh7 cells nor PBMCs. In addition, DFP-RVT diminished the level of redox-active iron (p < 0.01) and decreased the non-heme iron content (p < 0.01) in iron-loaded Huh7 cells effectively when compared without treatment in the order of DFP-RVT > RVT ∼ DFP treatments (50 µM each). Moreover, the compound decreased levels of hepatic ROS in a dose-dependent manner and the level of malondialdehyde, which was stronger than DFP but weaker than RVT. Furthermore, DFP-RVT restored the decrease in the GSH content and GPX and SOD activities (p < 0.01) in iron-loaded Huh7 cells in the dose-dependent manner, consistently in the order of RVT > DFP-RVT > DFP. Thus, the DFP-RVT hybrid possesses potent iron chelation, antioxidation, anti-lipid peroxidation, and antioxidant defense against oxidative liver damage under iron overload.

13.
Adv Healthc Mater ; : e2401438, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744050

RESUMO

Brachytherapy stands as an essential clinical approach for combating locally advanced tumors. Here, an injectable brachytherapy hydrogel is developed for the treatment of both local and metastatic tumor. Fe-tannins nanoparticles are efficiently and stably radiolabeled with clinical used therapeutic radionuclides (such as 131I, 90Y, 177Lu, and 225Ac) without a chelator, and then chemically cross-linked with 4-armPEG-SH to form brachytherapy hydrogel. Upon intratumoral administration, magnetic resonance imaging (MRI) signal from ferric ions embedded within the hydrogel directly correlates with the retention dosage of radionuclides, which can real-time monitor radionuclides emitting short-range rays in vivo without penetration limitation during brachytherapy. The hydrogel's design ensures the long-term tumor retention of therapeutic radionuclides, leading to the effective eradication of local tumor. Furthermore, the radiolabeled hydrogel is integrated with an adjuvant to synergize with immune checkpoint blocking therapy, thereby activating potent anti-tumor immune responses and inhibiting metastatic tumor growth. Therefore, this work presents an imageable brachytherapy hydrogel for real-time monitoring therapeutic process, and expands the indications of brachytherapy from treatment of localized tumors to metastatic tumors.

14.
Sci Rep ; 14(1): 14238, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902389

RESUMO

Municipal solid waste compost, the circular economy's closed-loop product often contains excessive amounts of toxic heavy metals, leading to market rejection and disposal as waste material. To address this issue, the study develops a novel approach based on: (i) utilizing plant-based biodegradable chelating agent, L-glutamic acid, N,N-diacetic acid (GLDA) to remediate heavy metals from contaminated MSW compost, (ii) comparative assessment of GLDA removal efficiency at optimal conditions with conventional nonbiodegradable chelator EDTA, and (iii) enhanced pre- and post-leaching to evaluate the mobility, toxicity, and bioavailability of heavy metals. The impact of treatment variables, such as GLDA concentration, pH, and retention time, on the removal of heavy metals was investigated. The process was optimized using response surface methodology to achieve the highest removal effectiveness. The findings indicated that under optimal conditions (GLDA concentration of 150 mM, pH of 2.9, retention time for 120 min), the maximum removal efficiencies were as follows: Cd-90.32%, Cu-81.96%, Pb-91.62%, and Zn-80.34%. This process followed a pseudo-second-order kinetic equation. Following GLDA-assisted leaching, the geochemical fractions were studied and the distribution highlighted Cd, Cu, and Pb's potential remobilization in exchangeable fractions, while Zn displayed integration with the compost matrix. GLDA-assisted leaching and subsequent fractions illustrated transformation and stability. Therefore, this process could be a sustainable alternative for industrial applications (agricultural fertilizers and bioenergy) and social benefits (waste reduction, urban landscaping, and carbon sequestration) as it has controlled environmental footprints. Hence, the proposed remediation strategy, chemically assisted leaching, could be a practical option for extracting heavy metals from MSW compost, thereby boosting circular economy.

15.
Microbiol Spectr ; 12(4): e0409523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376363

RESUMO

Candida albicans, one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug's target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida, including Candida auris and Candida glabrata, with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus. Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicansIMPORTANCEThe worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans. Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus. Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.


Assuntos
Produtos Biológicos , Micoses , Xantonas , Humanos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Farmacorresistência Fúngica , Quelantes/farmacologia , Quelantes/uso terapêutico , Aspergillus fumigatus , Ferro , Xantonas/uso terapêutico , Testes de Sensibilidade Microbiana
16.
ACS Infect Dis ; 10(5): 1431-1457, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38682683

RESUMO

Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.


Assuntos
Antifúngicos , Inteligência Artificial , COVID-19 , Mucormicose , Fatores de Virulência , Mucormicose/tratamento farmacológico , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
17.
J Inorg Biochem ; 256: 112569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701687

RESUMO

The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.


Assuntos
Rádio (Elemento) , Rádio (Elemento)/química , Rádio (Elemento)/uso terapêutico , Humanos , Radioisótopos/química , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Bário/química , Partículas alfa/uso terapêutico , Quelantes/química , Quelantes/uso terapêutico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Metais Alcalinoterrosos/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico
18.
Mitochondrion ; 78: 101903, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777220

RESUMO

Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.

19.
Biomed Pharmacother ; 176: 116874, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850661

RESUMO

Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.


Assuntos
Cobre , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Cobre/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos
20.
Bioresour Technol ; 403: 130863, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772520

RESUMO

The OH production by adding magnetite (MGT) alone has been reported in composting. However, the potential of nitrilotriacetic acid (NTA) addition for magnetite-amended sludge composting remained unclear. Three treatments with different addition [control check (CK); T1: 5 % MGT; T2: 5 % MGT + 5 % NTA] were investigated to characterize hydroxyl radical, humification and bacterial community response. The NTA addition manifested the best performance, with the peak OH content increase by 52 % through facilitating the cycle of Fe(Ⅱ)/Fe(Ⅲ). It led to the highest organic matters degradation (22.3 %) and humic acids content (36.1 g/kg). Furthermore, NTA addition altered bacterial community response, promoting relative abundances of iron-redox related genera, and amino acid metabolism but decreasing carbohydrate metabolism. Structural equation model indicated that temperature and Streptomyces were the primary factors affecting OH content. The study suggests that utilizing chelators is a promising strategy to strengthen humification in sewage sludge composting with adding iron-containing minerals.


Assuntos
Compostagem , Óxido Ferroso-Férrico , Substâncias Húmicas , Radical Hidroxila , Ácido Nitrilotriacético , Esgotos , Ácido Nitrilotriacético/química , Óxido Ferroso-Férrico/química , Compostagem/métodos , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA