RESUMO
Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing ß-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-ß(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.
Assuntos
Anticoagulantes , Peso Molecular , Oligossacarídeos , Polissacarídeos , Animais , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Stichopus/química , Pepinos-do-Mar/química , Sulfatos/química , Espectroscopia de Ressonância Magnética , Coagulação Sanguínea/efeitos dos fármacosRESUMO
Complete heparin digestion with heparin lyase I and II results in a mixture of hexasaccharides and tetrasaccharides with 3-O-sulfo group-containing glucosamine residues at their reducing ends. Because these tetrasaccharides are derived from antithrombin III-binding sites of heparin, we examined whether this method could be applied to estimate the anticoagulant activity of heparin. Therefore, this paper presents a new low molecular weight heparin sample preparation method-chemical depolymerization. Qualitative analysis of the studied compounds and a comparison of their composition are an important contribution to the structural analysis of low molecular weight heparins, which has not been fully conducted so far. Qualitative on-line liquid chromatography-mass spectrometric analysis of these resistant oligosaccharides is also described in this paper.
Assuntos
Glucosamina/metabolismo , Heparina Liase/metabolismo , Heparina/análise , Heparina/metabolismo , Oligossacarídeos/metabolismo , Cromatografia Líquida de Alta Pressão , Flavobacterium/enzimologia , Glucosamina/química , Heparina Liase/química , Peso Molecular , Oligossacarídeos/química , Controle de Qualidade , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Assuntos
Lignina , Lignina/química , Biomassa , Polimerização , BiocombustíveisRESUMO
Here we report a novel chemical recycling of carbon fiber-reinforced plastic (CFRP) using meta-chloroperoxybenzoic acid (mCPBA) as the representative oxidizing agent. The optimal decomposition conditions for the epoxy (EP) resin in CFRP were investigated by varying mCPBA concentration and reaction time. The CFRP decomposed completely within 6 h using a 1.5 M mCPBA solution at 40 °C. Tensile strength of recovered CF (r-CF) measured 4.4 GPa, 93.6% of virgin CF (v-CF), and electrical conductivity reached 590 S/cm, 95% of v-CF. Furthermore, the interfacial shear strength (IFSS) of the recovered carbon fibers (r-CF) using EP resin and polyamide 6 (PA6) was analyzed. For EP resin, the IFSS of r-CF was 88 MPa, a 26 % increase compared to v-CF. In the case of PA6 resin, IFSS values were 80 MPa for r-CF, a 17% improvement over v-CF. The study highlights superior mechanical properties and favorable IFSS of r-CF, positioning them as promising for composite regeneration. Remarkably, this method operated at relatively low temperatures compared to existing technologies, with energy consumption recorded at 35 MJ/kg, establishing it as the most energy-efficient recycling method available.
Assuntos
Fibra de Carbono , Reciclagem , Resistência ao Cisalhamento , Fibra de Carbono/química , Reciclagem/métodos , Plásticos/química , Resinas Epóxi/química , Resistência à Tração , Carbono/química , Caprolactama/análogos & derivados , PolímerosRESUMO
The transition to an eco-friendly circular materials system for garbage collected after use from end-users is a serious matter of concern for current society. One important tool in this challenge to achieve a truly circular economy is the chemical recycling of polymers. It has previously been demonstrated that chemical recycling is a feasible alternative to reach carbon circularity, which promotes the maximization of carbon recovery through all possible means. Among the advantages of chemical recycling, one must highlight its ability to selectively attack one or several target functionalities inside a complex mixed stream of polymers to obtain pure monomers, which can then be used to prepare virgin-like polymers as a final product. In previous works from our group, we used a microwave-heated potassium hydroxide in methanol (KMH) system to instantaneously depolymerize PET bottles. The KMH system was also effective for polycarbonate (PC), and intimately mixed PET/PC blends. In the present study, glass fiber reinforced (GFR) PET composites were submitted to depolymerization using the KMH system, and it was verified that more strict conditions were required for full depolymerization of GFR pellets than for pure PET pellets. Evidence of the reorganization of PET chains leading to increased crystallinity were obtained through DSC and WAXD. Surface adhesion of PET and crystallization onto glass fibers led to a different crystalline phase that seems to be more protected against the depolymerization solution, thus increasing the time required for full depolymerization when compared to unreinforced PET. An activation energy of 123 kJ/mol was estimated, in the same range of pristine PET pellets and PET bottles. The optimization of depolymerization conditions permitted 100% depolymerization within 5 min of reaction at 120 °C using 30 mL of KMH solution per g of composite. The green chemistry metrics reflect that our system is more efficient than most of the depolymerization systems found in the literature. The optimal depolymerization conditions here reported for GFR PET composites represent another step towards a total recycling system that includes not only pure polymers but also composites, commonly present in daily life.
RESUMO
The properties of infusibility and insolubility in organic solvent of cured epoxy resin makes it difficult to recycle carbon fiber reinforced plastics (CFRP). We have reported the recycling of CFRPs using the oxidizing power of hydroxyl radicals generated from NaOCl solution. In our study, we used benzyltrimethylammonium bromide (BTAB) and sodium dodecyl sulfate (SDS) for the interfacial separation between the epoxy resin and carbon fibers (CF). The surfactant system maximized recycling efficiency in both pretreatment and the main reaction of the CFRP recycling process. In the second step, the reaction time to successfully reclaim the CFs was much shorter, only one hour, compared with the two-hour reaction time for the non-SDS process previously reported by us. Scanning electron microscope images and Raman analyses showed that the surface of the reclaimed CF (r-CFs) was clean and smooth without any defects, and there was no significant structural change compared to virgin CF (v-CFs). The tensile strength of r-CF was 3.42 GPa which is 96.9% of the v-CF. Thus, the CFRP recycling process using SDS not only results in r-CF with good mechanical and physical properties, but also increases recycling efficiency by reducing the time.
Assuntos
Fibra de Carbono , Carbono , Reciclagem , Solventes , TensoativosRESUMO
The bioactivities of chitooligosaccharides are markedly influenced by the degree of acetylation, degree of polymerization or molecular weight and pattern of acetylation. Thus, it is crucial to identify reproducible processes that will give rise to well-defined chitooligosaccharides and establish methods for their posterior physicochemical characterization in order to advance in the knowledge of their bioactivity. Chitooligosaccharides were prepared by two different processes. The first used chitosanase enzymatic hydrolysis and the second consisted of a two-step procedure based on chemical hydrolysis followed by chitosanase hydrolysis. Chitooligosaccharides produced in the second process were composed of 63 % of fully deacetylated sequences and inhibited the growth of Escherichia coli and Listeria monocytogenes. Better antibacterial activity was found for those obtained in the first process composed of 27 % of fully deacetylated sequences. Therefore, a low percentage of free amino groups and the presence of acetylated sequences are necessary in these molecules to exert good antibacterial capacity.