Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 132: 74-85, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34961664

RESUMO

Protein ubiquitination is a key post-translational modification in regulating many fundamental cellular processes and dysregulation of these processes can give rise to a vast array of diseases. Unravelling the molecular mechanisms of ubiquitination hence is an important area in current ubiquitin research with as aim to understand this enigmatic process. The complexity of ubiquitin (Ub) signaling arises from the large variety of Ub conjugates, where Ub is attached to other Ub proteins, Ub-like proteins, and protein substrates. The chemical preparation of such Ub conjugates in high homogeneity and in adequate amounts contributes greatly to the deciphering of Ub signaling. The strength of these chemically synthesized conjugates lies in the chemo-selectivity in which they can be created that are sometimes difficult to obtain using biochemical methodology. In this review, we will discuss the progress in the chemical protein synthesis of state-of-the-art Ub and Ub-like chemical probes, their unique concepts and related discoveries in the ubiquitin field.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinação , Proteínas/metabolismo , Transdução de Sinais
2.
Chembiochem ; 25(5): e202300818, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149322

RESUMO

Insulin has long provided a model for studies of protein folding and stability, enabling enhanced treatment of diabetes mellitus via analogue design. We describe the chemical synthesis of a basal insulin analogue stabilized by substitution of an internal cystine (A6-A11) by a diselenide bridge. The studies focused on insulin glargine (formulated as Lantus® and Toujeo®; Sanofi). Prepared at pH 4 in the presence of zinc ions, glargine exhibits a shifted isoelectric point due to a basic B chain extension (ArgB31 -ArgB32 ). Subcutaneous injection leads to pH-dependent precipitation of a long-lived depot. Pairwise substitution of CysA6 and CysA11 by selenocysteine was effected by solid-phase peptide synthesis; the modified A chain also contained substitution of AsnA21 by Gly, circumventing acid-catalyzed deamidation. Although chain combination of native glargine yielded negligible product, in accordance with previous synthetic studies, the pairwise selenocysteine substitution partially rescued this reaction: substantial product was obtained through repeated combination, yielding a stabilized insulin analogue. This strategy thus exploited both (a) the unique redox properties of selenocysteine in protein folding and (b) favorable packing of an internal diselenide bridge in the native state, once achieved. Such rational optimization of protein folding and stability may be generalizable to diverse disulfide-stabilized proteins of therapeutic interest.


Assuntos
Insulina , Selenocisteína , Insulina Glargina , Cistina , Dissulfetos
3.
Chembiochem ; : e202400148, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629812

RESUMO

Native chemical ligation is a key reaction in the toolbox of chemical methods for the synthesis of native and modified proteins. The catalysis of ligation is commonly performed by using small aryl-thiol molecules added at high concentrations. In this work, we incorporated thiotyrosine, a non-canonical amino acid containing an aryl-thiol moiety, into a designed cyclic protein « sans queue ni tête ¼. Importantly, the protein environment reduced the pKa of the thiol group to 5.8-5.9, which is significantly lower than the previously reported value for thiotyrosine in a short peptide (pKa 6.4). Furthermore, we demonstrated the catalytic activity of this protein both as hydrolase and in native chemical ligation of peptides. These results will be useful for the development of efficient protein catalysts (enzymes) for protein synthesis and modification.

4.
Chembiochem ; : e202400253, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965889

RESUMO

The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.

5.
Chemistry ; 30(3): e202302969, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37815536

RESUMO

SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them. Appropriate utilization of advanced solid phase peptide synthesis and cutting-edge native chemical ligation methods have facilitated the synthesis of this moderately large protein molecule. We discuss the problems encountered during the chemical synthesis and approaches taken to optimize the yield and the purity of the synthetic protein molecule. Furthermore, we demonstrate that the chemically synthesized homogeneous spike RBD efficiently binds to the known mini-protein binder LCB1. The successful chemical synthesis of the spike RBD presented here can be utilized to gain valuable insights into SARS-CoV-2 spike RBD biology, advancing our understanding and aiding the development of intervention strategies to combat future coronavirus outbreaks. The modular synthetic approach described in this study can be effectively implemented in the synthesis of other mutated variants or enantiomer of the spike RBD for mirror-image drug discovery.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Ligação Proteica
6.
Chemistry ; 30(24): e202400120, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38363216

RESUMO

Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.


Assuntos
Proteína Ligante Fas , Apoptose , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/química , Receptor fas/metabolismo , Receptor fas/química , Glicosilação , Processamento de Proteína Pós-Traducional , Solubilidade
7.
Bioorg Med Chem ; 99: 117585, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219557

RESUMO

The T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an inhibitory immunoreceptor expressed on lymphocytes that serves as a promising target for cancer immunotherapy. In this study, facile synthetic protocols to produce the extracellular domain of TIGIT were investigated for applications of TIGIT in mirror-image screening. During the synthesis via sequential native chemical ligations, we encountered problems with significantly poor solubility of the ligated products. Introducing trityl-type solubilizing auxiliaries, which also functioned as temporary protecting groups for cysteine residues, facilitated a flexible order of ligations and efficient purification protocols. After refolding under appropriate conditions, the synthetic TIGIT showed a sufficient affinity toward its target ligand CD155.


Assuntos
Imunoglobulinas , Linfócitos T , Receptores Imunológicos , Imunoterapia , Tirosina
8.
Bioorg Chem ; 143: 107047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154387

RESUMO

Chemical protein synthesis offers a powerful way to access otherwise-difficult-to-obtain proteins such as mirror-image proteins. Although a large number of proteins have been chemically synthesized to date, the acquisition to proteins containing hydrophobic peptide fragments has proven challenging. Here, we describe an approach that combines the removable backbone modification strategy and the peptide hydrazide-based native chemical ligation for the chemical synthesis of a 28 kDa full-length PET degrading enzyme IGGC (a higher depolymerization efficiency of variant leaf-branch compost cutinase (LCC)) containing hydrophobic peptide segments. The synthetic ICCG exhibits the enzymatic activity and will be useful in establishing the corresponding mirror-image version of ICCG.


Assuntos
Polietilenotereftalatos , Hidrolases/química , Fragmentos de Peptídeos , Peptídeos/química , Polietilenotereftalatos/química
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468674

RESUMO

The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/farmacologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas Conjugadas/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Vacina BCG/farmacologia , Proteínas de Bactérias , Linfócitos T CD4-Positivos/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/imunologia , Receptor 2 Toll-Like/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia
10.
Angew Chem Int Ed Engl ; 63(5): e202317511, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085105

RESUMO

Site-selective functionalization strategies are in high demand to prepare well-defined homogeneous proteins for basic research and biomedical applications. In this regard, cysteine-based reactions have enabled a broad set of transformations to produce modified proteins for various applications. However, these approaches were mainly employed to modify a single reactive site with a specific transformation. Achieving site selectivity or multiple transformations, essential for preparing complex biomolecules, remains challenging. Herein we demonstrate the power of combining palladium(II)-mediated C-S bond formation and C-S bond cleavage reactions to selectively edit desired cysteine sites in complex and uniquely modified proteins. We developed an orthogonal palladium(II) strategy for rapid and effective diversification of multiple cysteine sites (3-6 residues) with various transformations. Importantly, we employed our approach to prepare 10 complex analogues, including modified, stapled, and multimeric proteins on a milligram scale. Furthermore, we also synthesized a focused library of stabilized artificial transcription factors that displayed enhanced stability and potent DNA binding activity. Our approach enables rapid and effective protein editing and opens new avenues to engineer new biomolecules for fundamental research and therapeutic applications.


Assuntos
Cisteína , Fatores de Transcrição , Cisteína/química , Paládio/química , Engenharia Química , Catálise
11.
Angew Chem Int Ed Engl ; 63(26): e202404992, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635000

RESUMO

Secretoglobin (SCGB) 3A2 belongs to an intriguing family of small, secreted proteins present only in mammals. Although members of the SCGB protein family have distinct amino acid sequences, they share structural similarities. Of particularly interest is the not yet fully understood self-assembly ability of SCGBs, which arise from covalent disulfide dimerization and non-covalent oligomerization. Recently, SCGB3A2 has attracted attention for its singular expression profile in airways. However, the knowledge on SCGB3A2 (patho)physiology derives exclusively from in vivo and complex ex vivo mixtures, which hampers characterization of the mechanisms driving SCGB3A2 structural behavior. Herein, we document the chemical synthesis of SCGB3A2 in multi-milligram quantities. Key to access both monomeric and homodimeric SCGB3A2 analogues was the use of KAHA ligation and enabled masking of the cysteine residue. The synthetic proteins were used to investigate the SCGB3A2 self-assembly profile, confirming their high propensity to dimerization even in the absence of the key Cys residue.


Assuntos
Dimerização , Humanos , Multimerização Proteica , Processos Fotoquímicos
12.
Angew Chem Int Ed Engl ; 63(14): e202318897, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326236

RESUMO

Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Peptídeos/química , Aminoácidos/química , Técnicas de Química Sintética/métodos , Peptídeo Hidrolases , Endopeptidases
13.
Angew Chem Int Ed Engl ; 63(19): e202403396, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490953

RESUMO

Although solid-phase peptide synthesis combining with chemical ligation provides a way to build up customized polypeptides in general, many targets are still presenting challenges for the conventional synthetic process, such as hydrophobic proteins. New methods and strategies are still required to overcome these obstacles. In this study, kinetic studies of Cys/Pen ligation and its acidolysis were performed, from which the fast acidolysis of substituted N,S-benzylidene thioacetals (NBTs) was discovered. The study demonstrates the potential of NBTs as a promising Cys switchable protection, facilitating the chemical synthesis of peptides and proteins by efficiently disrupting peptide aggregation. The compatibility of NBTs with other commonly adopted Cys protecting groups and their applications in sequential disulfide bond formation were also investigated. The first chemical synthesis of the native human programmed death ligand 1 immunoglobulin V-like (PD-L1 IgV) domain was achieved using the NBT strategy, showcasing its potential in difficult protein synthesis.


Assuntos
Cisteína , Peptídeos , Cisteína/química , Peptídeos/química , Peptídeos/síntese química , Humanos , Acetais/química , Compostos de Benzilideno/química , Compostos de Benzilideno/síntese química , Proteínas/química , Proteínas/síntese química
14.
Angew Chem Int Ed Engl ; 63(9): e202313640, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193587

RESUMO

D-peptide ligands can be screened for therapeutic potency and enzymatic stability using synthetic mirror-image proteins (D-proteins), but efficient acquisition of these D-proteins can be hampered by the need to accomplish their in vitro folding, which often requires the formation of correctly linked disulfide bonds. Here, we report the finding that temporary installation of natural O-linked-ß-N-acetyl-D-glucosamine (O-GlcNAc) groups onto selected D-serine or D-threonine residues of the synthetic disulfide-bonded D-proteins can facilitate their folding in vitro, and that the natural glycosyl groups can be completely removed from the folded D-proteins to afford the desired chirally inverted D-protein targets using naturally occurring O-GlcNAcase. This approach enabled the efficient chemical syntheses of several important but difficult-to-fold D-proteins incorporating disulfide bonds including the mirror-image tumor necrosis factor alpha (D-TNFα) homotrimer and the mirror-image receptor-binding domain of the Omicron spike protein (D-RBD). Our work establishes the use of O-GlcNAc to facilitate D-protein synthesis and folding and proves that D-proteins bearing O-GlcNAc can be good substrates for naturally occurring O-GlcNAcase.


Assuntos
Acetilglucosaminidase , Proteínas , Peptídeos , Polissacarídeos , Glucosamina
15.
Chembiochem ; 24(2): e202200601, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36377600

RESUMO

Small ubiquitin-like modifiers (SUMOs) are conjugated to protein substrates in cells to regulate their function. The attachment of SUMO family members SUMO1-3 to substrate proteins is reversed by specific isopeptidases called SENPs (sentrin-specific protease). Whereas SENPs are SUMO-isoform or linkage type specific, comprehensive analysis is missing. Furthermore, the underlying mechanism of SENP linkage specificity remains unclear. We present a high-throughput synthesis of 83 isopeptide-linked SUMO-based fluorescence polarization reagents to study enzyme preferences. The assay reagents were synthesized via a native chemical ligation-desulfurization protocol between 11-mer peptides containing a γ-thiolysine and a SUMO3 thioester. Subsequently, five recombinantly expressed SENPs were screened using these assay reagents to reveal their deconjugation activity and substrate preferences. In general, we observed that SENP1 is the most active and nonselective SENP while SENP6 and SENP7 show the least activity. Furthermore, SENPs differentially process peptides derived from SUMO1-3, who form a minimalistic representation of diSUMO chains. To validate our findings, five distinct isopeptide-linked diSUMO chains were chemically synthesized and proteolysis was monitored using a gel-based read-out.


Assuntos
Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Endopeptidases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Proteólise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/síntese química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química
16.
Chembiochem ; 24(20): e202300348, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37380612

RESUMO

The S-palmitoylation on Cys residue and O-acetylation on Ser/Thr residues are two types of base-labile post-translational modifications (PTMs) in cells. The lability of these PTMs to bases and nucleophiles makes the peptides/proteins bearing S-palmitoyl or O-acetyl groups challenging synthetic targets, which cannot be prepared via the standard Fmoc-SPPS and native chemical ligation. In this review, we summarized the efforts towards their preparation in the past 40 years, with the focus on the evolution of synthetic methods.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Peptídeos/química , Processamento de Proteína Pós-Traducional
17.
Chembiochem ; 24(4): e202200537, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36278392

RESUMO

Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.


Assuntos
Peptídeos , Proteínas , Cristalografia por Raios X , Proteínas/química , Peptídeos/química , Estereoisomerismo , Técnicas de Visualização da Superfície Celular
18.
Chemistry ; 29(37): e202300414, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37080930

RESUMO

Ufmylation is involved in various cellular processes and associated with many human diseases. The understanding of this modification relies on the use of customized UFM1-derived probes for activity-based profiling of its related enzymes. This study presents a highly optimized total chemical synthesis for the generation of diverse UFM1-derived probes including UFM1-PA, Biotin-UFM1-PA and UFM1-AMC, in which a UFM1 C-terminal valine hydrazide was readily prepared by hydrazide-based ligation and used as a versatile handle for the installation of enzyme-sensitive warheads and fluorescent reporters. The resulting probes display high reactivity and selectivity for UFM1-specific enzymes in cell lysates. This strategy facilitates the generation and diversity of the UFM1-derived toolkit that can be employed to profile UFM1-specific enzymes, thereby shining insights into the dynamics of ufmylation.


Assuntos
Enzimas Ativadoras de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Proteínas
19.
Chemistry ; 29(46): e202301253, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265454

RESUMO

Diselenide-selenoester ligations are increasingly used for the synthesis of proteins. Excellent ligation rates, even at low concentrations, in combination with mild and selective deselenization conditions can overcome some of the most severe challenges in chemical protein synthesis. Herein, the versatile multicomponent synthesis and application of a new ligation auxiliary that combines a photocleavable scaffold with the advantages of selenium-based ligation strategies are presented. Its use was investigated with respect to different ligation junctions and describe a novel para-methoxybenzyl deprotection reaction for the selenol moiety. The glycine-based auxiliary enabled successful synthesis of the challenging target protein G-CSF.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/química
20.
Molecules ; 28(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175065

RESUMO

Thiol catalysts are essential in native chemical ligation (NCL) to increase the reaction efficiency. In this paper, we report the use of thiocholine in chemical protein synthesis, including NCL-based peptide ligation and metal-free desulfurization. Evaluation of thiocholine peptide thioester in terms of NCL and hydrolysis kinetics revealed its practical utility, which was comparable to that of other alkyl thioesters. Importantly, thiocholine showed better reactivity as a thiol additive in desulfurization, which is often used in chemical protein synthesis to convert Cys residues to more abundant Ala residues. Finally, we achieved chemical synthesis of two differently methylated histone H3 proteins via one-pot NCL and desulfurization with thiocholine.


Assuntos
Peptídeos , Tiocolina , Peptídeos/química , Compostos de Sulfidrila/química , Histonas , Ligadura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA