RESUMO
Computational design advances enzyme evolution and their use in biocatalysis in a faster and more efficient manner. In this study, a synergistic approach integrating tunnel engineering, evolutionary analysis, and force-field calculations has been employed to enhance the catalytic activity of D-lactonohydrolase (D-Lac), which is a pivotal enzyme involved in the resolution of racemic pantolactone during the production of vitamin B5. The best mutant, N96S/A271E/F274Y/F308G (M3), was obtained and its catalytic efficiency (kcat/KM) was nearly 23-fold higher than that of the wild-type. The M3 whole-cell converted 20 % of DL-pantolactone into D-pantoic acid (D-PA, >99 %â e.e.) with a conversion rate of 47 % and space-time yield of 107.1â g L-1 h-1, demonstrating its great potential for industrial-scale D-pantothenic acid production. Molecular dynamics (MD) simulations revealed that the reduction in the steric hindrance within the substrate tunnel and conformational reconstruction of the distal loop resulted in a more favourable"catalytic" conformation, making it easier for the substrate and enzyme to enter their pre-reaction state. This study illustrates the potential of the distal residue on the pivotal loop at the entrance of the D-Lac substrate tunnel as a novel modification hotspot capable of reshaping energy patterns and consequently influencing the enzymatic activity.
Assuntos
4-Butirolactona/análogos & derivados , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Engenharia de Proteínas/métodos , CatáliseRESUMO
Stereoselective inhibition aided by "tailor-made" polymeric additives is an efficient approach to obtain enantiopure compounds through conglomerate crystallization. The chemical and configurational match between the side groups of polymers and the molecules of undesired enantiomer is considered to be a necessary condition for successful stereoseparation. Whereas in this contribution, we present an effective resolution of chiral pharmaceuticals by using cellulose acetates as the additives, which stereoselectively reside on the specific crystal faces of one enantiomer and inhibit its crystal nucleation and growth through helical pattern and supramolecular interaction complementarity. An investigation of nimodipine serves as a case study to highlight the novelty of this strategy wherein R-crystals exhibiting an impressive enantiomeric excess value of 97 % can be attained by employing a mere 0.01â wt % cellulose acetate. Guaifenesin and phenyl lactic acid are also well-resolved by utilizing this methodology. Our work not only brings about a brand-new design strategy for "tailor-made" additives, but will also promote the further exploration of the endless potential for utilizing natural biomolecules in chiral recognition and resolution.
RESUMO
Chirality is a fundamental and ubiquitous property of nature involved in multiple fields of science. In particular, the possible resolution of the enantiomeric forms of a molecule is crucial in the pharmaceutical, food, and agrochemical industries. The search for efficient, broad-spectrum, and yet simple methods for obtaining enantiomerically pure substances is a current challenge. Enantioselective resolution methods rely on an asymmetric environment that allows the two antipodes of a chiral molecule to be distinguished. In addition to enantiomeric separation techniques, such as chromatography and electrophoresis, new promising approaches involving out-of-the-scheme synergistic effects between chiral selectors (CS) and external stimuli are emerging. This Trends article discusses different enantioselective mechanisms triggered by unconventional physicochemical stimuli for the design of avant-garde approaches that could offer novel perspectives in the field of chiral resolution.
RESUMO
An asymmetric synthesis is a favorable approach for obtaining enantiomerically pure substances, but racemic resolution remains an efficient strategy. This study aims to elucidate the chiral resolution of aromatic amino acids and their elution order using glycopeptides as chiral selectors through molecular docking analysis. Chiral separation experiments were conducted using Vancomycin as a chiral additive in the mobile phase (CMPA) at various concentrations, coupled with an achiral amino column as the stationary phase. The Autodock Vina 1.1.2 software was employed to perform molecular docking simulations between each enantiomer (ligand) and Vancomycin (receptor) to evaluate binding affinities, demonstrate enantiomeric resolution feasibility, and elucidate chiral recognition mechanisms. Utilizing Vancomycin as CMPA at a concentration of 1.5 mM enabled the separation of tryptophan enantiomers with a resolution of 3.98 and tyrosine enantiomers with a resolution of 2.97. However, a poor chiral resolution was observed for phenylalanine and phenylglycine. Molecular docking analysis was employed to elucidate the lack of separation and elution order for tryptophan and tyrosine enantiomers. By calculating the binding energy, docking results were found to be in good agreement with experimental findings, providing insights into the underlying mechanisms governing chiral recognition in this system and the interaction sites. This comprehensive approach clarifies the complex relationship between chiral discrimination and molecular architecture, offering valuable information for creating and improving chiral separation protocols.
Assuntos
Aminoácidos Aromáticos , Glicopeptídeos , Simulação de Acoplamento Molecular , Glicopeptídeos/química , Aminoácidos Aromáticos/química , Estereoisomerismo , Vancomicina/química , Cromatografia Líquida de Alta Pressão/métodos , LigantesRESUMO
We report a unique category of π-extended diaza[7]helicenes with double negative curvatures. This is achieved by two-fold regioselective heptagonal cyclization of the oligoarylene-carbazole precursors through either intramolecular C-H arylation or Scholl reaction. The fusion of two heptagonal rings in the helical skeleton dramatically increases the intramolecular strain and forces the two terminal carbazole moieties to stack in a compressed fashion. The presence of the deformable negatively curved heptagonal rings endows the resulting diaza[7]helicenes with dynamic chiral skeletons, aggregation-induced emission feature and relatively low racemization barrier of ca. 25.6â kcal mol-1 . Further π-extension on the carbazole moieties subsequently leads to a more sophisticated C2 -symmetric homochiral triple helicene. Notably, these π-extended diaza[7]helicenes show structure-dependent stacking upon crystallization, switching from heterochiral packing to intra-layer homochiral stacking. Interestingly, the C2 -symmetric triple helicene molecules spontaneously resolve into a homochiral lamellar structure with 31 helix symmetry. Upon ultrasonication in a nonsolvent, the crystals can be readily exfoliated into large-area ultrathin nanosheets with height of ca. 4.4â nm corresponding to two layers of stacked triple helicene molecules and relatively thicker nanosheets constituted by even-numbered molecular lamellae. Moreover, regular hexagonal thin platelets with size larger than 30â µm can be readily fabricated by flash aggregation.
RESUMO
The incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach. A wide variation in the molecular geometries and photophysical properties of these helical nanographenes was observed, with changes in the helical length of these structures and the introduction of the pentagon-heptagon pairs. The embedded pentagon-heptagon pairs reduced the oxidation potential of the synthesized helical nanographenes. The high isomerization energy barriers enabled the chiral resolution of the helicene enantiomers. Chiroptical investigations revealed remarkably enhanced circularly polarized luminescence and luminescence dissymmetry factors with an increasing number of the pentagon-heptagon pairs.
RESUMO
Chirality, with its intrinsic symmetry-breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self-assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure. In this study, we present a series of six achiral molecules, demonstrating that when these conformationally flexible molecules adopt a cis-conformation and engage in multiple non-covalent interactions along a helical path, they collectively self-assemble into chiral superstructures consisting of single-handed supramolecular columns. When these homochiral supramolecular columns align in parallel, they form polar crystals that exhibit intense luminescence upon grinding or scraping. We therefore demonstrate our molecular design strategy could significantly increase the likelihood of symmetry breaking in achiral molecular synthons during self-assembly, offering a facile access to novel chiral crystalline materials with unique optoelectronic properties.
RESUMO
Described herein is the successful crystallization-induced dynamic resolution (CIDR) of an α-lithiated phosphine borane utilizing the easily accessible and inexpensive ligand (R,R)-TMCDA. Starting from the essential P-prochiral building block dimethyl phenyl phosphine borane we were able to obtain phosphine boranes in yields up to 80 % and e.r. up to 98 : 2 by crystallization of the lithiated intermediate prior to the trapping reaction. NMR-based deuterium labeling experiments indicate that the epimerization in solution is based on the intermolecular proton transfer between nonlithiated phosphine borane and the corresponding lithiated intermediate, rendering the presence of the remaining starting compound in an optimized solvent mixture the main factor for successful enantioselective synthesis. Quantum chemical calculations using different model systems based on solid state structures confirm these experimental results. By gaining insights into the epimerization mechanism, essential principles for CIDR of lithiated phosphine boranes are elucidated that may be expanded to other important P-stereogenic compounds and simple chiral amines.
RESUMO
Chirality is a fundamental characteristic of nature. Expanded porphyrinoids and their analogues offer an attractive platform for delving into the intricacies of chirality. Expanded porphyrinoids comprise pyrrolic macrocycles and related heterocyclic systems. As a class, expanded porphyrinoids are widely recognized for their flexible structural features, nontrivial coordination capabilities, and intriguing optical and electronic properties. With limited exceptions, their inherent conformational flexibility coupled with a low racemization barrier allows for the facile interchange between enantiomers. As a result, achieving the effective chiral resolution of individual enantiomers and the subsequent exploration of their chiroptical properties represents a significant challenge. This review summarizes strategies used to realize the chiral resolution of expanded porphyrinoids and the understanding of intrinsic chiroptical properties that has emerged from these separation efforts. It is our hope that this review will serve not only to codify our current understanding of chiral expanded porphyrinoids, but also inspire advances in the generalized area of chiral functional materials.
RESUMO
Deracemization extended to racemic-compound-forming systems is demonstrated. We present here the first results of an alternative for the resolution of systems that exhibit a stable racemic compound but also a closely related conglomerate-forming system. If the couples of enantiomers forming the racemic compound and the enantiomers of the stable conglomerate can syncrystallize in mirror-related partial solid solutions, it is possible to deracemize the racemic mixture of mixed crystals to access to a single handedness. The evidence for this possibility is given in three examples by using temperature-cycling-induced deracemization.
RESUMO
Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN â EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80â K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.
RESUMO
The synthesis and biochemical activity of a series of chiral trans 3-hydroxyl ß-lactams targeting tubulin is described. Synthesis of the series of enantiopure ß-lactams was achieved using chiral derivatising reagent N-Boc-l-proline. The absolute configuration was determined as 3S,4S for (+) enantiomer 4EN1 and 3R,4R for (-) enantiomer 4EN2. Antiproliferative studies identified chiral 3S,4S b-lactams with subnanomolar IC50 values across a range of cancer cell lines, improving potency with respect to the corresponding racemates. Fluoro-substituted (+)-(3S,4S)-4-(3-fluoro-4-methoxyphenyl)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (27EN1) was determined as the lead eutomer with dual antiproliferative activity in triple negative breast cancer cells (TNBC), and combretastatin A-4 resistant HT-29 colorectal cancer cells. IC50 values were in the range of 0.26-0.7 nM across four cell lines. Tubulin polymerisation assays, confocal microscopy and molecular modelling studies indicated that 3S,4S eutomers are microtubule destabilisers, while 3R,4R distomers have lower potency as microtubule destabilisers. 27EN1 demonstrated anti-mitotic and pro-apoptotic activity in MDA-MB-231 and HT-29 cells in addition to selective toxicity toward MCF-7 breast cancer versus non-tumorigenic MCF-10-2A cells. The related 3S,4S ß-lactam eutomer 4EN1 downregulated expression of key cell survival anti-apoptotic proteins Bcl-2 and Mcl-1 in MDA-MB-231 cells while 27EN1 downregulated Mcl-1 in HT-29 cells. Chiral ß-lactam 27EN1 will be further developed for treatment of TNBC and CA-4 resistant colorectal cancers.
Assuntos
Neoplasias Colorretais , Neoplasias de Mama Triplo Negativas , Humanos , Lactamas/farmacologia , Tubulina (Proteína)/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Relação Estrutura-Atividade , Microtúbulos/metabolismo , beta-Lactamas/química , Neoplasias Colorretais/tratamento farmacológicoRESUMO
A new biocatalyst PCL@UiO-67(Zr) was successfully synthesized by immobilized lipases on metal-organic frameworks (MOFs) materials. Compare with free lipases, zirconium foundation organic framework material UiO-67(Zr) modification on immobilized lipases Pseudomonas cepacia lipase (PCL) great boosts their enantioselectivity in the kinetic resolution racemic 4-chloro-mandelic acid (4-ClMA) on the organic solvent. The acquired bio-composite PCL@UiO-67(Zr) was fully characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption-desorption isotherm and aperture distribution map, and scanning electron microscopy (SEM). The catalytic performance of PCL@UiO-67(Zr), such as temperature, reaction time, and lipase quantity, were deeply explored. The experiment results showed resolution racemic 4-ClMA optimum conditions that 20 mmol/L of (R, S)-4-chloromandelic acid, 120 mmol/L vinyl acetate, 30-mg immobilized lipases PCL@UiO-67(Zr), 2 mL of MTBE, 500 rpm, and under the 55°C reaction 18 h. In this optimum conditions, c and eep could reach up to 47.6% and 98.7%, respectively.
Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Zircônio/química , Lipase/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , SolventesRESUMO
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.
RESUMO
In this work, homochiral reduced imine cage was covalently bonded to the surface of the silica to prepare a novel high-performance liquid chromatography stationary phase, which was applied for the multiple separation modes such as normal phase, reversed-phase, ion exchange, and hydrophilic interaction chromatography. The successful preparation of the homochiral reduced imine cage bonded silica stationary phase was confirmed by performing a series of methods including X-ray photoelectron spectroscopy, thermogravimetric analysis, and infrared spectroscopy. From the extracted results of the chiral resolution in normal phase and reversed-phase modes, it was demonstrated that seven chiral compounds were successfully separated, among which the resolution of 1-phenylethanol reached the value of 3.97. Moreover, the multifunctional chromatographic performance of the new molecular cage stationary phase was systematically investigated in the modes of reversed-phase, ion exchange, and hydrophilic interaction chromatography for the separation and analysis of a total of 59 compounds in eight classes. This work demonstrated that the homochiral reduced imine cage not only achieved multiseparation modes and multiseparation functions performance with high stability, but also expanded the application of the organic molecular cage in the field of liquid chromatography.
RESUMO
D-Amino acids, which are present in small amounts in living organisms, are responsible for a variety of physiological functions. Some bioactive/biomolecular peptides also contain D-amino acids in their sequences; such peptides express different functions than peptides composed only of L-form amino acids. Among the 20 amino acids that make up proteins, threonine (Thr) and isoleucine (Ile) have two chiral carbons and thus have two enantiomers and diastereomers. These stereoisomers have been previously analyzed through HPLC using chiral columns or chiral resolution labeling reagents. However, the separation and identification of these stereoisomers are highly laborious and complicated. Herein, we propose an analytical method for the separation and identification of Ile stereoisomers through LC-MS using our original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine-amide (L-FDVDA) and a PBr column packed with pentabromobenzyl-modified silica gel. Twenty DL-amino acids including Thr stereoisomers (41 amino acids including glycine) were separated and identified using C18 column. Ile stereoisomers could be separated using not a C18 column but a PBr column. Additionally, we showed that peptides containing Thr and Ile stereoisomers can be accurately detected through labeling with L-FDVDA.
Assuntos
Aminoácidos , Isoleucina , Estereoisomerismo , Indicadores e Reagentes , Aminoácidos/química , Cromatografia Líquida de Alta Pressão/métodos , Aminas , PeptídeosRESUMO
Four pairs of aryldihydronaphthalene-type lignanamide enantiomers were isolated from Solanum lyratum (Solanaceae). The enantiomeric separation was accomplished by chiral-phase HPLC, and five undescribed compounds were elucidated. Analysis by various spectroscopy and ECD calculations, the structures of undescribed compounds were illuminated. The neuroprotective effects of all compounds were evaluated using H2 O2 -induced human neuroblastoma SH-SY5Y cells and AchE inhibition activity. Among them, compound 4 a exhibited remarkable neuroprotective effects at high concentrations of 25 and 50â µmol/L comparable to Trolox. Compound 1 a showed the highest AchE inhibition with the IC50 value of 3.06±2.40â µmol/L. Molecular docking of the three active compounds was performed and the linkage between the compounds and the active site of AchE was elucidated.
Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Solanum , Humanos , Solanum/química , Fármacos Neuroprotetores/química , Simulação de Acoplamento Molecular , Estereoisomerismo , Estrutura MolecularRESUMO
Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(-)-limonene over R-(+)-limonene and a flux of 0.32â mmol m-2 h-1 . This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.
RESUMO
A non-aromatic expanded carbaporphyrinoid, incorporating two built-in 2,7-pyrenylene moieties was synthesized. The intrinsically labile structure was demonstrated by proton-triggered conformational changes between the figure-of-eight and quasi-Möbius conformers. Upon treatment with Pd(OAc)2 , the reaction produces two bis-PdII complexes with distinct coordination modes. Metal coordination serves to fix the macrocyclic frameworks with the net result that both bis-PdII complexes could be resolved by high performance liquid chromatography (HPLC) on a chiral stationary phase. The isolated enantiomers showed persistent chiroptical properties as evidenced by the intense response in the circular dichroism (CD) spectra and the record high absorption dissymmetry factors (gabs of up to 0.038) seen in the near-infrared spectral region. Moreover, the mutual interconversion of these two PdII complexes was found to be stereospecific and to favor the more stable isomers under weakly acidic conditions.
Assuntos
Dicroísmo Circular , EstereoisomerismoRESUMO
Enzyme immobilization has been demonstrated to be a favorable protocol for promoting the industrialization of bioactive molecules, but still with formidable challenge. Addressing this challenge, we create a dynamic defect generation strategy for enzyme immobilization by using the dissociation equilibrium of metal-organic frameworks (MOFs) mediated by enzymes. Enzymes can act as "macro ligands" to generate competitive coordination against original ligands, along with the release of metal clusters of MOFs to generate defects, hence promoting the gradual transport of enzymes from the surface to inside. Various enzymes can be efficiently immobilized in MOFs to afford composites with good enzymatic activities, protective performances and exceptional reusabilities. Moreover, multienzyme bioreactors capable of efficient cascade reactions can also be generated. This study provides new opportunities to construct highly efficient biocatalysts incorporating different types of enzymes.