Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mar Drugs ; 20(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877745

RESUMO

The role of NLRP3 in the tumour microenvironment is elusive. In some cancers, the activation of NLRP3 causes a worse prognosis and in some cancers, NLRP3 increases chances of survivability. However, in many cases where NLRP3 has a protumorigenic role, inhibition of NLRP3 would be a crucial step in therapy. Consequently, activation of NLRP3 would be of essence when inflammation is required. Although many ways of inhibiting and activating NLRP3 in cancers have been discussed before, not a lot of focus has been given to chitin and chitosan in this context. The availability of these marine compounds and their versatility in dealing with inflammation needs to be investigated further in relation with cancers, along with other natural extracts. In this review, the effects of NLRP3 on gastrointestinal and gynaecological cancers and the impact of different natural extracts on NLRP3s with special emphasis on chitin and chitosan is discussed. A research gap in using chitin derivatives as anti/pro-inflammatory agents in cancer treatment has been highlighted.


Assuntos
Quitosana , Neoplasias dos Genitais Femininos , Anti-Inflamatórios , Quitina/farmacologia , Quitosana/farmacologia , Feminino , Neoplasias dos Genitais Femininos/tratamento farmacológico , Humanos , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Microambiente Tumoral
2.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886948

RESUMO

Chitin is the most widespread amino renewable carbohydrate polymer in nature and the second most abundant polysaccharide. Therefore, chitin and chitinolytic enzymes are becoming more importance for biotechnological applications in food, health and agricultural fields, the design of effective enzymes being a paramount issue. We report the crystal structure of the plant-type endo-chitinase Chit33 from Trichoderma harzianum and its D165A/E167A-Chit33-(NAG)4 complex, which showed an extended catalytic cleft with six binding subsites lined with many polar interactions. The major trait of Chit33 is the location of the non-conserved Asp117 and Arg274 acting as a clamp, fixing the distorted conformation of the sugar at subsite -1 and the bent shape of the substrate, which occupies the full catalytic groove. Relevant residues were selected for mutagenesis experiments, the variants being biochemically characterized through their hydrolytic activity against colloidal chitin and other polymeric substrates with different molecular weights and deacetylation percentages. The mutant S118Y stands out, showing a superior performance in all the substrates tested, as well as detectable transglycosylation capacity, with this variant providing a promising platform for generation of novel Chit33 variants with adjusted performance by further design of rational mutants'. The putative role of Tyr in binding was extrapolated from molecular dynamics simulation.


Assuntos
Quitinases , Catálise , Quitina/metabolismo , Quitinases/metabolismo , Peso Molecular , Especificidade por Substrato
3.
Mar Drugs ; 19(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668290

RESUMO

It is widely recognized that chitin and chitosan are potential sources of bioactive materials and that their oligosaccharides reveal various biological activities (including antimicrobial) that are correlated with their structures and physicochemical properties. This study uses the molecular docking approach to assess the interactions of small chito-oligosaccharides (MW< 1500 Da) with plasma proteins in order to obtain information regarding their fate of distribution in the human organism. There are favorable interactions of small chito-oligomers with plasma proteins, the interactions with human serum albumin being stronger than those with α-1-acid glycoprotein. The interaction energies increase with increasing the molecular weight, decrease with increasing deacetylation degrees and are reliant on the deacetylation pattern. This study could inform the application of chito-oligosaccharides with varying molecular weights, degrees, and patterns of deacetylation in human health.


Assuntos
Proteínas Sanguíneas/metabolismo , Quitina/análogos & derivados , Simulação de Acoplamento Molecular , Acetilação , Quitina/química , Quitina/metabolismo , Quitosana , Humanos , Peso Molecular , Oligossacarídeos , Albumina Sérica Humana/metabolismo
4.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299419

RESUMO

Chito-oligosaccharides (COSs) were encapsulated by the film-ultrasonic method into three nano-liposomes, which were uncoated liposomes (COSs-Lip), chitosan-coated liposomes (CH-COSs-Lip), and sodium alginate (SA)/chitosan (CH)-coated liposomes (SA/CH-COSs-Lip). The physicochemical and structural properties, as well as the stability and digestive characteristics, of all three nano-liposomes were assessed in the current study. Thereafter, the characteristics of intestinal absorption and transport of nano-liposomes were investigated by the Caco-2 cell monolayer. All nano-liposomes showed a smaller-sized distribution with a higher encapsulation efficiency. The ζ-potential, Z-average diameter (Dz), and polydispersity index (PDI) demonstrated that the stability of the SA/CH-COSs-Lip had much better stability than COSs-Lip and CH-COSs-Lip. In addition, the transport of the nano-liposomes via the Caco-2 cell monolayer indicated a higher transmembrane transport capacity. In summary, the chitosan and sodium alginate could serve as potential delivery systems for COSs to fortify functional foods and medicines.


Assuntos
Quitosana/metabolismo , Materiais Revestidos Biocompatíveis/química , Lipossomos/química , Nanopartículas/química , Oligossacarídeos/metabolismo , Transporte Biológico , Células CACO-2 , Quitosana/química , Humanos , Oligossacarídeos/química
5.
Mar Drugs ; 18(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121316

RESUMO

A convenient and sensitive triple-wavelength overlapping resonance Rayleigh scattering (TWO-RRS) method for the detection of chito-oligosaccharides (COS) was proposed based on enhancing the rigid surface of porous reticular spatial structure of gelatin and COS by introducing allura red AC (AR). The interaction and resultant porous reticular spatial structure were characterized with transmission electron microscopy (TEM), RRS, and UV-Vis spectroscopy. The results indicated that gelatin and COS formed porous reticular spatial structure with an average diameter of 1.5-2.0 µm, and the RRS value of COS-AR-gelatin ternary system with gelatin participation was significantly higher than that of COS-AR binary system. Under the optimal conditions, the enhanced TWO-RRS intensity of the system was linearly proportional to COS concentration in the range of 0.30-2.50 µg/mL, and the regression equation was ΔI = 4933.2c-446.21 with R2 = 0.9980. The limit of detection was 0.0478 µg/mL. So, a new method for the detection of COS was established and verified in the health products with satisfactory results.


Assuntos
Quitina/química , Gelatina/química , Oligossacarídeos/química , Animais , Compostos Azo , Espectrometria de Fluorescência
7.
Crit Rev Biotechnol ; 37(1): 11-25, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26526199

RESUMO

Chitin is one of the most abundant renewable resources, and chitosans, the partially deacetylated derivatives of chitin, are among the most promising functional biopolymers, with superior material properties and versatile biological functionalities. Elucidating molecular structure-function relationships and cellular modes of action of chitosans, however, it is challenging due to the micro-heterogeneity and structural complexity of polysaccharides. Lately, it has become apparent that many of the biological activities of chitosan polymers, such as in agricultural plant disease protection or in mediating scar-free wound healing, may be attributed to oligomeric break-down products generated by the action of chitosanolytic hydrolases present in the target tissues, such as human chitotriosidase. Consequently, the focus of current research is shifting toward chitosan oligomers so that the availability of well-defined chitosan oligosaccharides (COS) becomes a bottleneck. Well-known ways of producing COS use physical and/or chemical means for the partial depolymerization of chitosan polymers, typically leading to broad mixtures of COS varying in their degrees of polymerization (DP) and acetylation (DA), and with more or less random patterns of acetylation (PAs). Even after chromatographic separation according to DP and DA, such mixtures are of limited value to elucidate structure-function relationships and modes of action. More recently, enzymatic means using chitinases and/or chitosanases, and sometimes chitin deacetylases, have been proposed as these can be more tightly controlled and yield slightly better defined mixtures of COS. An alternative would be chemical synthesis of COS which in principle would allow for full structural control, but protocols for it are lengthy, costly, and not yet well developed, and yields are low. Synthetic biology now allows to develop today's in vitro bio-refinery approaches into in vivo cell factory approaches for the biotechnological production of defined COS using recombinant microbial strains expressing chitin oligomer synthases and chitin oligomer deacetylases. In this review, we will describe the state-of-the-art of this cell factory approach, as a basis for upcoming developments. We will briefly describe traditional chemical protocols and enzymatic production of COS as a background to the more detailed presentation of what has been achieved through in vivo biosynthesis. We will only briefly describe those as a background to the more detailed presentation of what has been achieved through in vivo biosynthesis. We will also touch on the production of COS derivatives that has been achieved in this way, as these oligomers open up another plethora of potential applications when used as building blocks for defined biomaterials.


Assuntos
Quitosana/metabolismo , Oligossacarídeos/metabolismo , Bactérias/metabolismo , Biotecnologia , Quitosana/química , Fermentação , Hidrolases/química , Oligossacarídeos/química
8.
Prep Biochem Biotechnol ; 47(2): 116-122, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27830993

RESUMO

Bacillus thuringiensis is a nonhuman pathogen bacterium that is used as a fungal and insect biocontrol agent. Because of its environmental interaction, it possesses several extracellular enzymes that are able to degrade chitin and chitosan, two of the most important polymers because of their application in numerous fields. However, in recent years, it has been observed that oligosaccharides from the enzymatic degradation of chitosan have important benefits for human health. Comparison and exploration of the production of chito-oligosaccharides from different sources of chitosan will improve the process parameters and expand the biotechnology based in these molecules. This study shows the production of chito-oligosaccharides from three different sources of colloidal chitosan and conducts a qualitative-quantitative comparison between them, using the extracellular enzyme of B. thuringiensis. We found that in the three substrates, it is possible to get a mixture of chito-oligosaccharides from dimer to hexamer in a concentration range from 0.72 to 8.09 mg · g-1 of original substrate. The best substrate to obtain these molecules was commercial chitosan as it has the highest production yields.


Assuntos
Bacillus thuringiensis/metabolismo , Quitosana/química , Coloides/química , Oligossacarídeos/biossíntese , Quitosana/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Enzimas/metabolismo
9.
Fish Shellfish Immunol ; 40(1): 267-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038280

RESUMO

We investigated the effects of incorporating chitinase (ChiB565)-hydrolyzed shrimp shell chitin into the diet of hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂) with regard to production, intestinal immune status and autochthonous gut bacteria, and protection against bacterial pathogen Aeromonas hydrophila. Five experimental diets were formulated by supplementing the basal diet with the hydrolyzed shrimp shell chitin (0.0%, T1 control; 0.8%, T3; 1.6%, T4; or 2.4%, T5) or 0.1% commercial chitosan-oligosaccharides as commercial recommendation dose (T2, positive control). After a 35-day feeding trial, we found no significant difference in weight gain, feed conversion ratio or survival rate in tilapia among all treatment groups. However, the levels of mRNAs encoding the pro-inflammatory protein tumor necrosis factor-α and the stress-response protein heat shock protein 70 were much lower in groups T2, T3, T4 and T5 (p < 0.001). The levels of transforming growth factor-ß were higher in groups T2 and T4 (p < 0.001 and p < 0.0001, respectively). In addition, group T3 and T4 with 0.8% and 1.6% hydrolyzed shrimp shell chitin supplementation respectively changed marginally their autochthonous gut bacteria (0.60 < Cs < 0.80). When challenged with A. hydrophila, the mortality of groups fed chito-oligosaccharides was lower than the control, especially in groups T4 and T5 (p < 0.05). These results indicate that dietary intake of chito-oligosaccharides can improve intestinal health, changed autochthonous gut bacteria, and improve resistance to infection by A. hydrophila, even with higher efficiency than receiving the manufacturer recommended dose of the commercial chitosan-oligosaccharides.


Assuntos
Infecções Bacterianas/veterinária , Quitosana/farmacologia , Ciclídeos , Doenças dos Peixes/prevenção & controle , Oligossacarídeos/farmacologia , Ração Animal/análise , Animais , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Fenômenos Fisiológicos Bacterianos , Quitosana/administração & dosagem , Ciclídeos/crescimento & desenvolvimento , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença , Doenças dos Peixes/microbiologia , Expressão Gênica , Intestinos/imunologia , Intestinos/microbiologia , Oligossacarídeos/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real/veterinária
10.
Int J Biol Macromol ; 259(Pt 2): 129250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199551

RESUMO

This study delves into the potential of chito-oligosaccharides (COS) to promote osteoblast differentiation and prevent osteoporosis, utilizing experiments with mouse MSCs and the zebrafish model. The preliminary biocompatibility study affirms the non-toxic nature of COS across various concentrations. In the osteoblast differentiation study, COS enhances ALP activity and calcium deposition at the cellular level. Moreover, COS induces the upregulation of molecular markers, including Runx2, Type I collagen, ALP, osteocalcin, and osteonectin in mouse MSCs. Zebrafish studies further demonstrate COS's anti-osteoporotic effects, showcasing its ability to expedite fin fracture repair, vertebral mineralization, and bone mineralization in dexamethasone-induced osteoporosis models. The scale regenerative study reveals that COS mitigates the detrimental effects of dexamethasone induced osteoclastic activity, reducing TRAP and hydroxyproline levels while elevating the expression of Runx2a MASNA isoform, collagen2α, OC, and ON mRNAs. Additionally, COS enhances calcium and phosphorus levels in regenerated scales, impacting the bone-healthy calcium-to­phosphorus ratio. The study also suggests that COS modulates the MMP3-Osteopontin-MAPK signaling pathway. Overall, this comprehensive investigation underscores the potential of COS to prevent and treat osteoporosis. Its multifaceted cellular and molecular effects, combined with in vivo bone regeneration and repair, propose that COS may be effective in addressing osteoporosis and related bone disorders. Nonetheless, further research is imperative to unravel underlying mechanisms and optimize clinical applications.


Assuntos
Quitosana , Osteoporose , Camundongos , Animais , Peixe-Zebra/metabolismo , Quitosana/metabolismo , Cálcio/metabolismo , Osteogênese , Osteoporose/metabolismo , Diferenciação Celular , Dexametasona/farmacologia , Osteoblastos , Fósforo/metabolismo
11.
Front Plant Sci ; 15: 1360254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384763

RESUMO

The European Green Deal aims to reduce the pesticide use, notably by developing biocontrol products to protect crops from diseases. Indeed, the use of significant amounts of chemicals negatively impact the environment such as soil microbial biodiversity or groundwater quality, and human health. Grapevine (Vitis vinifera) was selected as one of the first targeted crop due to its economic importance and its dependence on fungicides to control the main damaging diseases worldwide: grey mold, downy and powdery mildews. Chitosan, a biopolymer extracted from crustacean exoskeletons, has been used as a biocontrol agent in many plant species, including grapevine, against a variety of cryptogamic diseases such as downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and grey mold (Botrytis cinerea). However, the precise molecular mechanisms underlying its mode of action remain unclear: is it a direct biopesticide effect or an indirect elicitation activity, or both? In this study, we investigated six chitosans with diverse degrees of polymerization (DP) ranging from low to high DP (12, 25, 33, 44, 100, and 470). We scrutinized their biological activities by evaluating both their antifungal properties and their abilities to induce grapevine immune responses. To investigate their elicitor activity, we analyzed their ability to induce MAPKs phosphorylation, the activation of defense genes and metabolite changes in grapevine. Our results indicate that the chitosans with a low DP are more effective in inducing grapevine defenses and possess the strongest biopesticide effect against B. cinerea and P. viticola. We identified chitosan with DP12 as the most efficient resistance inducer. Then, chitosan DP12 has been tested against downy and powdery mildews in the vineyard trials performed during the last three years. Results obtained indicated that a chitosan-based biocontrol product could be sufficiently efficient when the amount of pathogen inoculum is quite low and could be combined with only two fungicide treatments during whole season programs to obtain a good protection efficiency. On the whole, a chitosan-based biocontrol product could become an interesting alternative to meet the chemicals reduction targeted in sustainable viticulture.

12.
Front Plant Sci ; 15: 1303750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390295

RESUMO

Lowland meadows represent aboveground and belowground biodiversity reservoirs in intensive agricultural areas, improving water retention and filtration, ensuring forage production, contrasting erosion and contributing to soil fertility and carbon sequestration. Besides such major ecosystem services, the presence of functionally different plant species improves forage quality, nutritional value and productivity, also limiting the establishment of weeds and alien species. Here, we tested the effectiveness of a commercial seed mixture in restoring a lowland mixed meadow in the presence or absence of inoculation with arbuscular mycorrhizal (AM) fungi and biostimulation of symbiosis development with the addition of short chain chito-oligosaccharides (CO). Plant community composition, phenology and productivity were regularly monitored alongside AM colonization in control, inoculated and CO-treated inoculated plots. Our analyses revealed that the CO treatment accelerated symbiosis development significantly increasing root colonization by AM fungi. Moreover, the combination of AM fungal inoculation and CO treatment improved plant species evenness and productivity with more balanced composition in forage species. Altogether, our study presented a successful and scalable strategy for the reintroduction of mixed meadows as valuable sources of forage biomass; demonstrated the positive impact of CO treatment on AM development in an agronomic context, extending previous observations developed under controlled laboratory conditions and leading the way to the application in sustainable agricultural practices.

13.
Biology (Basel) ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36671779

RESUMO

Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.

14.
Heliyon ; 9(7): e18197, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519647

RESUMO

The pisciculture industry has grown multi-fold over the past few decades. However, a surge in development and nutrient demand has led to the establishment of numerous challenges. Being a potential solution, chitosan has gained attention as a bio nanocomposite for its well-acclaimed properties including biodegradability, non-toxicity, immunomodulatory effects, antimicrobial activity, and biocompatibility. This biopolymer and its derivatives can be transformed into various structures, like micro and nanoparticles, for various purposes. Consequently, with regards to these properties chitin and its derivatives extend their application into drug delivery, food supplementation, vaccination, and preservation. This review focuses on the clinical advancements made in fish biotechnology via chitosan and its derivatives and highlights its prospective expansion into the pisciculture industry-in particular, warm-water species.

15.
Anal Sci ; 39(12): 2019-2029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672170

RESUMO

This article describes the fabrication of porous nicotinic acid-functionalized chito-oligosaccharide-bonded titania/silica hybrid monoliths (TiO2/SiO2@ChO-N) through a co-gelation sol-gel process. A capillary monolith with a well-defined and homogeneous structure was obtained by controlling the hydrolysis speed of titanium alkoxides in a sol mixture by using glycerol and acetylacetone. As a result of the functionalization with chito-oligosaccharides (ChO)-modified nicotinic acid, the obtained stationary phase provides superior physiochemical properties, such as a cationic hydrophilic surface, porosity, and mechanical strength. Scanning electron microscope and attenuated total reflectance-infrared spectroscopy were used to characterize the functionalized monolithic columns. The produced capillary columns showed high chromatographic performance with acceptable selectivity for charged analytes as well as organic polar compounds such as nucleic bases, nucleosides, carbamate pesticides, and strobilurin fungicides. The obtained results also indicated that the functionalized ChO's amino, amide, hydroxyl, and pyridinium ring moieties served as hydrophilic electrostatic traps for charged substances, in addition to stroing π-π interaction with the carbamate pesticides and strobilurin fungicides analytes via hydrogen bonding.

16.
Front Bioeng Biotechnol ; 11: 1190879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274159

RESUMO

Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.

17.
Food Chem ; 366: 130530, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303204

RESUMO

In this study, the effects of different temperatures, incubation times and types of reducing sugars, including glucose and different low molecular weight (Mw) chito-oligosaccharides (COS) with varying acetylation degree (AD), on the extent of Maillard reaction (MR) on chitosan-based films were studied. Interestingly, an improvement of structural and functional properties of all MR-crosslinked films was noted, which is more pronounced by heating at higher temperature and exposure time. These findings were proved through Fourier-transform infrared and X-ray diffraction analyses. In addition, color change and Ultraviolet spectra demonstrate that glucose addition provides the high extent of MR, followed by COS1 (Mw < 4.4 kDa; AD, 18.20%) and COS2 (Mw < 4.4 kDa; AD, 10.63%). These results were confirmed by enhanced water resistance and thermal properties. Moreover, MR-chitosan/COS films showed the highest mechanical properties, whereas, glucose-loaded films were brittle, as demonstrated by scanning electron microscopy micrographs. Furthermore, MR-chitosan/COS1 films exhibited the better antioxidant behavior followed by chitosan/glucose and chitosan/COS2 films, mainly at higher heating-conditions. Thereby, MR-crosslinked chitosan/COS based films were attractive to be applied as functional and active coating-materials in various fields.


Assuntos
Quitosana , Antioxidantes , Glucose , Reação de Maillard , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Agric Food Chem ; 69(11): 3371-3379, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33688734

RESUMO

Partially acetylated chito-oligosaccharides (paCOSs) are bioactive compounds with potential medical applications. Their biological activities are largely dependent on their structural properties, in particular their degree of polymerization (DP) and the position of the acetyl groups along the glycan chain. The production of structurally defined paCOSs in a purified form is highly desirable to better understand the structure/bioactivity relationship of these oligosaccharides. Here, we describe a newly discovered chitinase from Paenibacillus pabuli (PpChi) and demonstrate by mass spectrometry that it essentially produces paCOSs with a DP of three and four that carry a single N-acetylation at their reducing end. We propose that this specific composition of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) residues, as in GlcN(n)GlcNAc1, is due to a subsite specificity toward GlcN residues at the -2, -3, and -4 positions of the partially acetylated chitosan substrates. In addition, the enzyme is stable, as evidenced by its long shelf life, and active over a large temperature range, which is of high interest for potential use in industrial processes. It exhibits a kcat of 67.2 s-1 on partially acetylated chitosan substrates. When PpChi was used in combination with a recently discovered fungal auxilary activity (AA11) oxidase, a sixfold increase in the release of oligosaccharides from the lobster shell was measured. PpChi represents an attractive biocatalyst for the green production of highly valuable paCOSs with a well-defined structure and the expansion of the relatively small library of chito-oligosaccharides currently available.


Assuntos
Quitinases , Quitosana , Acetilação , Animais , Quitina/metabolismo , Quitinases/metabolismo , Quitosana/metabolismo , Oligossacarídeos , Paenibacillus
19.
J Fungi (Basel) ; 7(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34575756

RESUMO

The development of yeast biofilms is a major problem due to their increased antifungal resistance, which leads to persistent infections with severe clinical implications. The high antifungal activity of well-characterized chitosan polymers makes them potential alternatives for treating yeast biofilms. The activity of a chito-oligosaccharide with a depolymerization degree (DPn) of 32 (C32) and a fraction of acetylation (FA) of 0.15 on Candida sp. biofilms was studied. The results showed a concentration-dependent reduction in the number of viable cells present in C. albicans, C. glabrata, and C. guillermondii preformed biofilms in the presence of C32, especially on intermediate and mature biofilms. A significant decrease in the metabolic activity of yeast biofilms treated with C32 was also observed. The antifungals fluconazole (Flu) and miconazole (Mcz) decreased the number of viable cells in preformed early biofilms, but not in the intermediate or mature biofilms. Contrary to Flu or Mcz, C32 also reduced the formation of new biofilms. Interestingly, a synergistic effect on yeast biofilm was observed when C32 and Flu/Mcz were used in combination. C32 has the potential to become an alternative therapeutic agent against Candida biofilms alone or in combination with antifungal drugs and this will reduce the use of antifungals and decrease antifungal resistance.

20.
J Adv Pharm Technol Res ; 12(4): 373-377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820312

RESUMO

The present study evaluated the physicochemical characterization and cytotoxicity activity of chitosan and chito-oligosaccharides (COSs). The extraction of chitosan and COSs was executed by chemical hydrolysis. The physicochemical characterization and deacetylation (DA) value were determined using an FTIR. The molecular weight was determined by using the Mark-Houwink equation. The physical parameters such as solubility, water-binding capacity (WBC), and fat-binding capacity (FBC) were determination as per equation (i), (ii), and (iii) respectively. The cytotoxic activities of chitosan and COS against MCF-7, HepG2, HeLa-6, and 3T3 were performed by MTS assay. The COS induced enhance cytotoxicity with IC50 0.87 and2.21 mg/ml against MCF-7 and HepG2 respectively. However, COSs seem to be more sensitive toward the cell lines with the relative potential of MCF-7 > HepG2 > HeLa. Hence, the results showed promising future perspectives of chitosan and COS to develop biodegradable, antibacterial, cytotoxic naturally derived polysaccharides for cancer drug delivery and smart wound dressings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA