Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2121095119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858334

RESUMO

The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre-Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as Vglut2 and Sst neurons) and inhibitory neurons (defined as Vgat neurons) and inhibit and activate neurons defined by the transcription factor Dbx1 to gain an understanding of the coordination between the preBötC and swallow behavior. We found that stimulating inhibitory preBötC neurons did not mimic the premature shutdown of inspiratory activity caused by water swallows, suggesting that swallow-induced suppression of inspiratory activity is not directly mediated by the inhibitory neurons in the preBötC. By contrast, stimulation of preBötC Dbx1 neurons delayed laryngeal closure of the swallow sequence. Inhibition of Dbx1 neurons increased laryngeal closure duration and stimulation of Sst neurons pushed swallow occurrence to later in the respiratory cycle, suggesting that excitatory neurons from the preBötC connect to the laryngeal motoneurons and contribute to the timing of swallowing. Interestingly, the delayed swallow sequence was also caused by chronic intermittent hypoxia (CIH), a model for sleep apnea, which is 1) known to destabilize inspiratory activity and 2) associated with dysphagia. This delay was not present when inhibiting Dbx1 neurons. We propose that a stable preBötC is essential for normal swallow pattern generation and disruption may contribute to the dysphagia seen in obstructive sleep apnea.


Assuntos
Deglutição , Optogenética , Respiração , Centro Respiratório , Animais , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/fisiologia , Laringe , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Centro Respiratório/fisiologia
2.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894630

RESUMO

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Assuntos
Berberina , Proteína Forkhead Box O3 , Hipóxia , Transdução de Sinais , Sirtuínas , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Sirtuínas/metabolismo , Sirtuínas/genética , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Camundongos , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Modelos Animais de Doenças
3.
J Physiol ; 602(1): 49-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38156943

RESUMO

Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.


Assuntos
Hipertensão , Síndromes da Apneia do Sono , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Átrios do Coração/metabolismo , Hipóxia
4.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L698-L712, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591125

RESUMO

Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.


Assuntos
Hipóxia , Camundongos Endogâmicos C57BL , Neurônios , Oligodendroglia , Transcriptoma , Animais , Oligodendroglia/metabolismo , Camundongos , Masculino , Hipóxia/metabolismo , Hipóxia/genética , Neurônios/metabolismo , Neurônios/patologia , Tronco Encefálico/metabolismo
5.
Dev Neurosci ; 46(1): 44-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231864

RESUMO

Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.


Assuntos
Hipóxia , Síndromes da Apneia do Sono , Humanos , Hipóxia/complicações , Hipóxia/metabolismo , Síndromes da Apneia do Sono/metabolismo , Encéfalo/metabolismo , Oxigênio , Estresse Oxidativo
6.
BMC Cancer ; 24(1): 41, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183079

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is associated with increased risk of lung cancer mortality. Nevertheless, little is known about the underlying molecular mechanisms. This research aimed to investigate differentially expressed genes (DEGs) and explore their function in Lewis lung carcinoma (LLC)-bearing mice exposed to chronic intermittent hypoxia (CIH) by transcriptome sequencing. METHODS: Lung cancer tissues in LLC-bearing mice exposed to CIH or normoxia were subjected for transcriptome sequencing to examine DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were employed to explore the function of DEGs. To evaluate the prognostic value of DEGs, the Kaplan-Meier survival analysis in combination with Cox proportional hazard model were applied based on The Cancer Genome Atlas. RESULTS: A total of 388 genes with 207 up-regulated and 181 down-regulated genes were differentially expressed between the CIH and normoxia control groups. Bioinformatics analysis revealed that the DEGs were related to various signaling pathways such as chemokine signaling pathway, IL-17 signaling pathway, TGF-ß signaling pathway, transcriptional misregulation in cancer, natural killer cell mediated cytotoxicity, PPAR signaling pathway. In addition, the DEGs including APOL1, ETFB, KLK8, PPP1R3G, PRL, SPTA1, PLA2G3, PCP4L1, NINJ2, MIR186, and KLRG1 were proven to be significantly correlated with poorer overall survival in lung adenocarcinoma. CONCLUSIONS: CIH caused a significant change of gene expression profiling in LLC-bearing mice. The DEGs were found to be involved in various physiological and pathological processes and correlated with poorer prognosis in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/genética , Transcriptoma , Processos Neoplásicos , Hipóxia/genética
7.
Exp Cell Res ; 433(2): 113850, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926341

RESUMO

Calcineurin plays a key role in cardiovascular pathogenesis by exerting pro-apoptotic effects in cardiomyocytes. However, whether calcineurin can regulate cardiomyocyte autophagy under conditions of chronic intermittent hypoxia (CIH) remains unclear. Here, we showed that CIH induced calcineurin activity in H9c2 cells, which attenuated adenosine monophosphate-activated protein kinase (AMPK) signaling and inhibited autophagy. In H9c2 cells, autophagy levels, LC3 expression, and AMPK phosphorylation were significantly elevated under conditions of CIH within 3 days. However, after 5 days of CIH, these effects were reversed and calcineurin activity and apoptosis were significantly increased. The calcineurin inhibitor 17-Allyl-1,14-dihydroxy-12-[2-(4-hydroxy-3-methoxycyclohexyl) -1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo- [22.3.1.04,9]octacos-18- ene-2,3,10,16-tetrone (FK506) restored AMPK activation and LC3 expression and attenuated CIH-induced H9c2 cell apoptosis. In contrast, calcineurin overexpression significantly attenuated the increase in LC3 expression and enhanced H9c2 cell apoptosis under conditions of CIH. Calcineurin inhibition failed to induce autophagy or alleviate apoptosis in H9c2 cells expressing a kinase-dead K45R AMPK mutant. Autophagy inhibition abrogated the protective effects of FK506-mediated calcineurin inhibition. These results indicate that calcineurin suppresses adaptive autophagy during CIH by downregulating AMPK activation. Our findings reveal the underlying mechanism of calcineurin and autophagy regulation during H9c2 cell survival under conditions of CIH and may provide a new strategy for preventing CIH-induced cardiomyocyte damage.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Calcineurina , Miócitos Cardíacos , Animais , Ratos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Calcineurina/metabolismo , Hipóxia , Miócitos Cardíacos/metabolismo , Tacrolimo/farmacologia
8.
Appl Microbiol Biotechnol ; 108(1): 380, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888634

RESUMO

Obstructive sleep apnea (OSA) can lead to intestinal injury, endotoxemia, and disturbance of intestinal flora. Additionally, as a crucial component of the endocannabinoid system, some studies have demonstrated that cannabinoid 1 (CB1) receptors are closely linked to the multiple organ dysfunction triggered by OSA. However, the role of the CB1 receptor in alleviating OSA-induced colon injury remains unclear. Here, through the construction of the OSA classic model, we found that the colon tissue of chronic intermittent hypoxia (CIH)-induced mice exhibited an overexpression of the CB1 receptor. The results of hematoxylin-eosin staining and transmission electron microscopy revealed that inhibition of the CB1 receptor could decrease the gap between the mucosa and muscularis mucosae, alleviate mitochondrial swelling, reduce microvilli shedding, and promote the recovery of tight junctions of CIH-induced mice. Furthermore, CB1 receptor inhibition reduced the levels of metabolic endotoxemia and inflammatory responses, exhibiting significant protective effects on the colon injury caused by CIH. At the molecular level, through western blotting and real-time polymerase chain reaction techniques, we found that inhibiting the CB1 receptor can significantly increase the expression of ZO-1 and Occludin proteins, which are closely related to the maintenance of intestinal mucosal barrier function. Through 16S rRNA high-throughput sequencing and short-chain fatty acid (SCFA) determination, we found that inhibition of the CB1 receptor increased the diversity of the microbial flora and controlled the makeup of intestinal flora. Moreover, butyric acid concentration and the amount of SCFA-producing bacteria, such as Ruminococcaceae and Lachnospiraceae, were both markedly elevated by CB1 receptor inhibition. The results of the spearman correlation study indicated that Lachnospiraceae showed a positive association with both ZO-1 and Occludin but was negatively correlated with the colon CB1 receptor, IL-1ß, and TNF-α. According to this study, we found that inhibiting CB1 receptor can improve CIH-induced colon injury by regulating gut microbiota, reducing mucosal damage and promoting tight junction recovery. KEY POINTS: •CIH leads to overexpression of CB1 receptor in colon tissue. •CIH causes intestinal flora disorder, intestinal mucosal damage, and disruption of tight junctions. •Inhibition of CB1 receptor can alleviate the colon injury caused by CIH through regulating the gut microbiota, reducing mucosal injury, and promoting tight junction recovery.


Assuntos
Colo , Modelos Animais de Doenças , Mucosa Intestinal , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Camundongos , Colo/patologia , Colo/microbiologia , Colo/metabolismo , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Ocludina/genética , Microbioma Gastrointestinal , Junções Íntimas/metabolismo
9.
Gerontology ; 70(3): 302-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38168028

RESUMO

INTRODUCTION: The objective of this study was to examine the potential induction of senescence in vascular endothelial cells (VECs) by chronic intermittent hypoxia (CIH), a defining characteristic of obstructive sleep apnea (OSA). This investigation seeks to elucidate the underlying mechanisms that contribute to the development of cardiovascular diseases in patients with OSA, with a particular focus on CIH-induced vascular aging. METHODS: The BioSpherix-OxyCycler system was used to establish models of CIH in both rats and human umbilical vein endothelial cells (HUVECs). To assess VECs' senescence, various methods were employed including EdU incorporation assay, cell cycle analysis, senescence-associated ß-galactosidase (SA-ß-gal) staining, and senescence protein testing. Vascular aging was evaluated through measurements of carotid-femoral pulse wave velocity, intima-media thickness, and Ki67 immunohistochemical staining. In order to identify the molecular mechanisms associated with CIH-induced senescence in VECs, a bioinformatics study was conducted utilizing the Gene Expression Omnibus database. RESULTS: Under conditions of CIH, HUVECs exhibited inhibited proliferation, arrested cell cycle, increased activity of SA-ß-gal, and elevated expression levels of p53 and p21 compared to HUVECs under normoxic conditions. Similarly, rats exposed to CIH displayed increased carotid-femoral pulse wave velocity, intima-media thickness, vascular permeability, and SA-ß-gal activity in VECs, along with decreased expression of arterial Ki67. BTG3-associated protein (BANP) was found to be highly expressed in CIH-induced VECs. Furthermore, the overexpression of BANP resulted in the senescence of VECs, along with elevated levels of p53 phosphorylation and nuclear localization. CONCLUSIONS: These findings demonstrate that CIH can induce VECs senescence and contribute to vascular aging. Additionally, BANP can induce VECs senescence by promoting p53 phosphorylation and nuclear retention. These discoveries offer novel insights into the increased cardiovascular risk associated with OSA, thereby presenting new possibilities for therapeutic intervention.


Assuntos
Apneia Obstrutiva do Sono , Proteína Supressora de Tumor p53 , Animais , Humanos , Ratos , Espessura Intima-Media Carotídea , Senescência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/complicações , Antígeno Ki-67/metabolismo , Fosforilação , Análise de Onda de Pulso , Apneia Obstrutiva do Sono/complicações , Proteína Supressora de Tumor p53/metabolismo
10.
Sleep Breath ; 28(3): 1197-1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267641

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is highly comorbid with Alzheimer's disease (AD) and may represent a risk factor for inducing or accelerating cognitive impairment in AD. Chronic intermittent hypoxia (CIH) has been considered to be a predictor of developing cognitive decline and AD. However, the precise underlying mechanisms by which CIH contributes to cognitive impairment remain unknown. In the present study, we examined the effects of CIH on cognition and hippocampal function in APP/PS1 mice, an animal model of AD. METHODS: Wild-type (WT) and APP/PS1 mice were subjected to one of the following conditions for 2 weeks: (1) sham condition (continuous room air) or (2) CIH condition. The oxygen concentration of the CIH condition transitioned from 5 to 21%. Behavioral tests, electrophysiological recording, real-time polymerase chain reaction, and Western blot were used to assess the effect of CIH on cognitive performance and synaptic plasticity. RESULTS: CIH exposure did not affect motor coordination, general locomotor activity, anxiety, or willingness to explore. However, behavioral test results indicated that APP/PS1-CIH mice showed more spatial learning and memory deficits. CIH induced long-term potentiation (LTP) dysfunction of the hippocampus in WT mice. These effects were aggravated in APP/PS1 mice. The N-methyl-D-aspartic acid receptor (NMDAR) NR1 subunit and postsynaptic density 95 (PSD95) in the hippocampus of WT and APP/PS1 mice were downregulated. CONCLUSIONS: These findings showed that a postsynaptic mechanism was involved in the effect of CIH on cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Modelos Animais de Doenças , Hipóxia , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Hipóxia/fisiopatologia , Hipóxia/complicações , Camundongos Transgênicos , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/complicações , Hipocampo/fisiopatologia , Hipocampo/metabolismo , Masculino , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia
11.
Sleep Breath ; 28(1): 133-149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37428351

RESUMO

PURPOSE: This study evaluated the effects of chronic intermittent hypoxia (CIH) at different times on the mitochondria of mouse hearts and H9C2 cardiomyocytes to determine the role of the cannabinoid receptor 1 (CB1R)/adenosine 5'-monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) signaling pathway. METHODS: Animal and cellular CIH models were prepared in an intermittent hypoxia chamber at different times. The cardiac function of mice was determined, and heart tissue and ultrastructural changes were observed. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were detected, and MitoTracker™ staining was performed to observe cardiomyocyte mitochondria. Western blot, immunohistochemistry, and cellular immunofluorescence were also performed. RESULTS: In the short-term CIH group, increases in mouse ejection fraction (EF) and heart rate (HR); mitochondrial division; ROS and mitochondrial membrane potential; and the expression levels of CB1R, AMPK, and PGC-1α were observed in vivo and in vitro. In the long-term CIH group, the EF and HR increased, the myocardial injury and mitochondrial damage were more severe, mitochondrial synthesis decreased, the apoptosis percentage and ROS increased, mitochondrial fragmentation increased, membrane potential decreased, CB1R expression increased, and AMPK and PGC-1α expression levels decreased. Targeted blocking of CB1R can increase AMPK and PGC-1α, reduce damage attributed to long-term CIH in mouse hearts and H9C2 cells, and promote mitochondrial synthesis. CONCLUSION: Short-term CIH can directly activate the AMPK/PGC-1α pathway, promote mitochondrial synthesis in cardiomyocytes, and protect cardiac structure and function. Long-term CIH can increase CB1R expression and inhibit the AMPK/PGC-1α pathway, resulting in structural damage, the disturbance of myocardial mitochondria synthesis, and further alterations in the cardiac structure. After targeted blocking of CB1R, levels of AMPK and PGC-1α increased, alleviating damage to the heart and cardiomyocytes caused by long-term CIH.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Hipóxia/metabolismo
12.
J Physiol ; 601(5): 1017-1036, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36647759

RESUMO

The carotid body (CB) is a prototypical acute oxygen (O2 )-sensing organ that mediates reflex hyperventilation and increased cardiac output in response to hypoxaemia. CB overactivation, secondary to the repeated stimulation produced by the recurrent episodes of intermittent hypoxia, is believed to contribute to the pathogenesis of sympathetic hyperactivity present in sleep apnoea patients. Although CB functional plasticity induced by chronic intermittent hypoxia (CIH) has been demonstrated, the underlying mechanisms are not fully elucidated. Here, we show that CIH induces a small increase in CB volume and rearrangement of cell types in the CB, characterized by a mobilization of immature quiescent neuroblasts, which enter a process of differentiation into mature, O2 -sensing and neuron-like, chemoreceptor glomus cells. Prospective isolation of individual cell classes has allowed us to show that maturation of CB neuroblasts is paralleled by an upregulation in the expression of specific glomus cell genes involved in acute O2 -sensing. CIH enhances mitochondrial responsiveness to hypoxia in maturing neuroblasts as well as in glomus cells. These data provide novel perspectives on the pathogenesis of CB-mediated sympathetic overflow that may lead to the development of new pharmacological strategies of potential applicability in sleep apnoea patients. KEY POINTS: Obstructive sleep apnoea is a frequent condition in the human population that predisposes to severe cardiovascular and metabolic alterations. Activation of the carotid body, the main arterial oxygen-sensing chemoreceptor, by repeated episodes of hypoxaemia induces exacerbation of the carotid body-mediated chemoreflex and contributes to sympathetic overflow characteristic of sleep apnoea patients. In rats, chronic intermittent hypoxaemia induces fast neurogenesis in the carotid body with rapid activation of neuroblasts, which enter a process of proliferation and maturation into O2 -sensing chemoreceptor glomus cells. Maturing carotid body neuroblasts and glomus cells exposed to chronic intermittent hypoxia upregulate genes involved in acute O2 sensing and enhance mitochondrial responsiveness to hypoxia. These findings provide novel perspectives on the pathogenesis of carotid body-mediated sympathetic hyperactivation. Pharmacological modulation of carotid body fast neurogenesis could help to ameliorate the deleterious effects of chronic intermittent hypoxaemia in sleep apnoea patients.


Assuntos
Corpo Carotídeo , Apneia Obstrutiva do Sono , Ratos , Humanos , Animais , Corpo Carotídeo/metabolismo , Hipóxia , Oxigênio/metabolismo , Neurogênese
13.
J Physiol ; 601(24): 5553-5577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882783

RESUMO

Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.


Assuntos
Sistema Cardiovascular , Hipertensão , Apneia Obstrutiva do Sono , Humanos , Hipóxia , Rim/patologia , Apneia Obstrutiva do Sono/complicações
14.
Curr Issues Mol Biol ; 45(12): 10193-10210, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132482

RESUMO

The present study aimed to investigate the impact of hydrogen (H2) on chronic intermittent hypoxia (CIH)-induced cardiac hypertrophy in mice by modulating iron metabolism. C57BL/6N mice were randomly allocated into four groups: control (Con), CIH, CIH + H2, and H2. The mice were exposed to CIH (21-5% FiO2, 3 min/cycle, 8 h/d), and received inhalation of a hydrogen-oxygen mixture (2 h/d) for 5 weeks. Cardiac and mitochondrial function, levels of reactive oxygen species (ROS), and iron levels were evaluated. The H9C2 cell line was subjected to intermittent hypoxia (IH) and treated with H2. Firstly, we found H2 had a notable impact on cardiac hypertrophy, ameliorated pathological alterations and mitochondrial morphology induced by CIH (p < 0.05). Secondly, H2 exhibited a suppressive effect on oxidative injury by decreasing levels of inducible nitric oxide synthase (i-NOS) (p < 0.05) and 4-hydroxynonenal (4-HNE) (p < 0.01). Thirdly, H2 demonstrated a significant reduction in iron levels within myocardial cells through the upregulation of ferroportin 1 (FPN1) proteins (p < 0.01) and the downregulation of transferrin receptor 1 (TfR1), divalent metal transporter 1 with iron-responsive element (DMT1(+ire)), and ferritin light chain (FTL) mRNA or proteins (p < 0.05). Simultaneously, H2 exhibited the ability to decrease the levels of Fe2+ and ROS in H9C2 cells exposed to IH (p < 0.05). Moreover, H2 mediated the expression of hepcidin, hypoxia-inducible factor-1α (HIF-1α) (p < 0.01), and iron regulatory proteins (IRPs), which might be involved in the regulation of iron-related transporter proteins. These results suggested that H2 may be beneficial in preventing cardiac hypertrophy, a condition associated with reduced iron toxicity.

15.
Biochem Biophys Res Commun ; 659: 62-71, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37037067

RESUMO

BACKGROUND: Previous studies by our group have demonstrated chronic intermittent hypoxia (CIH) can decrease connexin 43 (Cx43) protein expression and thus increase atrial fibrillation (AF) inducibility. Cardiac sympathetic denervation (CSD) can reduce AF and increase Cx43 expression, however, the underlying molecular mechanisms and signaling pathways are still unclear. METHODS AND RESULTS: An obstructive sleep apnea (OSA) rat model in vivo experiments and CIH H9c2 cells model in vitro experiments were used to figure out the roles and underlying mechanisms of Cx43 on OSA-associated AF. In this study, we examined the expression of Cx43, CaMKⅡγ, Bax, Caspase 3, HIF-1 Bcl-2, Tunel, and CPB/p300, to discover the association between proteins and the mechanism of regulatory changes. The downstream proteins of Cx43 were calculated by gene sequencing and data analysis. We found Cx43 expression was significantly downregulated after CIH exposure in rat and H9c2 cells. Active caspase-3 and Bax at CIH+8 h group are high, but decreased at OE+8 h group. The Bcl-2 expression was higher in the N and OE+8 h group than CIH+8 h group. TUNEL-positive cells from the CIH+8 h group was markedly higher. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated Cx43 overexpression inhibited the CaMKIIγ expression, and CaMKIIγ was involved in the HIF-1 signaling pathway. In addition, we also found Cx43 overexpression remarkably decreased the HIF-1 protein and p300 mRNA expression, which inhibits the CaMKIIγ/HIF-1 signaling pathway. CONCLUSIONS: Taken together, these results suggested Cx43 overexpression inhibits the expression of calcium/calmodulin dependent protein CaMKⅡγ via the Cx43/CaMKIIγ/HIF-1 axis, which finally reduces the myocardial apoptosis and incidence of AF.


Assuntos
Fibrilação Atrial , Apneia Obstrutiva do Sono , Animais , Ratos , Fibrilação Atrial/genética , Proteína X Associada a bcl-2 , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Conexina 43/genética , Modelos Animais de Doenças , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia , Incidência , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/metabolismo
16.
Sleep Breath ; 27(5): 1725-1732, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36607542

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is a sleep disorder that may lead to cognitive impairment. The primary pathophysiological feature of OSA is chronic intermittent hypoxia (CIH), but the underlying mechanisms of CIH are not known. There have been few studies on the role of ferroptosis, a novel form of programmed cell death, during CIH-induced cognitive impairment. Therefore, this paper examined ferroptosis' effect on CIH-mediated cognitive impairment. METHODS: The study randomized twenty-four Sprague-Dawley (SD) male rats to control or CIH group. CIH rats were subjected to intermittent hypoxia for 4 weeks. Rat learning and memory were analyzed by the Morris water maze (MWM) test. Alterations of hippocampal neuronal ultrastructure were observed by transmission electron microscopy (TEM). Malondialdehyde (MDA) and ferrous iron (Fe2+) levels and superoxide dismutase (SOD) and reduced glutathione (GSH) contents were determined. Ferroptosis-associated protein levels were examined by Western blotting. RESULTS: The MWM test indicated that rats in the CIH group exhibited neurocognitive impairment. TEM showed that CIH induced mitochondrial damage. Significant increases in Fe2+ and MDA levels were observed in the CIH group, and GSH and SOD levels were decreased. Expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4) increased, and glutathione peroxidase 4 (GPX4) protein levels were decreased, suggesting that ferroptosis was induced in CIH model rats. The NF-E2-related factor 2 (Nrf2) protein level in the CIH group was decreased. CONCLUSION: Ferroptosis had an essential effect on CIH-mediated cognitive impairment, and it may occur via Nrf2 dysregulation. These findings lay a solid foundation for the subsequent study of OSA-associated cognitive impairment offering potential evidence for the development of therapeutic strategies.


Assuntos
Disfunção Cognitiva , Ferroptose , Apneia Obstrutiva do Sono , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/uso terapêutico , Disfunção Cognitiva/etiologia , Superóxido Dismutase , Hipóxia/metabolismo , Apneia Obstrutiva do Sono/complicações
17.
Sleep Breath ; 27(3): 893-902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35871214

RESUMO

PURPOSE: Chronic intermittent hypoxia (CIH) is a major cause of cognitive dysfunction in people with obstructive sleep apnea syndrome (OSAS), as it damages synapse structure, and function. This study aimed to investigate the potential mechanisms resulting in cognitive impairment caused by CIH in patients with OSAS. METHODS: Healthy adult SD male rats (n = 36) were randomly divided into four groups: control, CIH, WP1066, and dimethyl sulfoxide (DMSO). The CIH, WP1066, and DMSO groups were exposed to intermittent hypoxic environments for 8 h per day for 28 d. The WP1066 group received intraperitoneal injection of WP1066, a selective signal transducer and activator of transcription-3 (STAT3) inhibitor. All the experimental rats were subjected to the Morris water maze. Hippocampal tissue samples (n = 6 per group) were used for western blot analysis, and brain tissue samples (n = 3 per group) were used for immunohistochemistry and hematoxylin and eosin staining. RESULTS: The cognition of rats exposed to prolonged CIH was impaired. P-STAT3 expression was found to be higher in CIH rats than in control rats. Postsynaptic density95 (PSD95) expression was significantly reduced in rats with CIH-induced learning and memory impairment, but it significantly increased after the STAT3 signaling pathway was blocked, which improved learning and memory ability. However, inhibition of the STAT3 signaling pathway failed to improve the decline of synaptophysin (SYP) protein caused by CIH. CONCLUSIONS: When rats are exposed to CIH, STAT3 in the brain is activated, PSD95 and SYP levels decrease, and cognition is impaired. Inhibition of the STAT3 signaling pathway increases PSD95 to recover postsynaptic plasticity, thereby improving cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Fator de Transcrição STAT3 , Apneia Obstrutiva do Sono , Animais , Masculino , Ratos , Disfunção Cognitiva/etiologia , Dimetil Sulfóxido , Hipóxia , Transdução de Sinais , Apneia Obstrutiva do Sono/complicações , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo
18.
J Ultrasound Med ; 42(6): 1319-1325, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36478449

RESUMO

OBJECTIVES: The objective of our study was to assess the ability of contrast-enhanced ultrasound (CEUS) in evaluating renal microperfusion in an animal model. METHODS: Twenty Sprague-Dawley rats were subdivided into two groups: the normal and chronic intermittent hypoxia (CIH) groups. In the CIH model, 10 Sprague-Dawley rats were exposed to CIH for 8 weeks to mimic obstructive sleep apnea (OSA). The CEUS parameters of the renal cortex and medulla were obtained and compared between groups. The pathological changes of the kidney tissues were examined by histological staining such as hematoxylin and eosin (H&E) and Masson's trichrome. RESULTS: CIH caused morphological damage to kidneys. In the cortex, the peak intensity (PI) (P = .009) was significantly lower and time to peak (Ttop) (P = .019) was significantly prolonged in the CIH group compared with the controls. The area under ascending curve (WiAUC) in the medulla and cortex were both significantly lower in the CIH group than those in the control group (P both <.05). CEUS parameters (including PI and WiAUC of the cortex and WiAUC of the medulla) were negatively correlated with serum creatinine (P all <.05). In the medulla, the area under descending curve (WoAUC) was positively correlated with serum creatinine (P = .027), PI was negatively correlated with uric acid (P = .034). CONCLUSION: CEUS parameters (including Ttop, PI, WoAUC, and WiAUC) reflect renal microvascular changes in CIH. CEUS could be a safe and accurate imaging method to assess renal microvascular damage in CIH rats.


Assuntos
Hipóxia , Rim , Ratos , Animais , Ratos Sprague-Dawley , Creatinina , Rim/patologia , Hipóxia/diagnóstico por imagem , Hipóxia/patologia , Ultrassonografia , Modelos Animais de Doenças
19.
Adv Exp Med Biol ; 1427: 23-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322332

RESUMO

The main question of this chapter is as follows: What is the contribution of changes in the sympathetic-respiratory coupling to the hypertension observed in some experimental models of hypoxia? Although there is evidence supporting the concept that sympathetic-respiratory coupling is increased in different models of experimental hypoxia [chronic intermittent hypoxia (CIH) and sustained hypoxia (SH)], it was also observed that in some strains of rats and in mice, these experimental models of hypoxia do not affect the sympathetic-respiratory coupling and the baseline arterial pressure. The data from studies performed in rats (different strains, male and female, and in the natural sleep cycle) and mice submitted to chronic CIH or SH are critically discussed. The main message from these studies performed in freely moving rodents and in the in situ working heart-brainstem preparation is that experimental hypoxia changes the respiratory pattern, which correlates with increased sympathetic activity and may explain the hypertension observed in male and female rats previously submitted to CIH or SH.


Assuntos
Hipertensão , Roedores , Ratos , Masculino , Feminino , Camundongos , Animais , Ratos Wistar , Sistema Nervoso Simpático , Hipertensão/etiologia , Hipóxia/complicações
20.
Adv Exp Med Biol ; 1427: 53-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322335

RESUMO

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associated with pulmonary hypertension (PH). Rats exposed to CIH develop systemic and lung oxidative stress, pulmonary vascular remodeling, and PH and overexpress Stim-activated TRPC-ORAI channels (STOC) in the lung. Previously, we demonstrated that 2-aminoethyl-diphenylborinate (2-APB)-treatment, a STOC-blocker, prevents PH and the overexpression of STOC induced by CIH. However, 2-APB did not prevent systemic and pulmonary oxidative stress. Accordingly, we hypothesize that the contribution of STOC in the development of PH induced by CIH is independent of oxidative stress. We measured the correlation between right ventricular systolic pressure (RVSP) and lung malondialdehyde (MDA) with the gene expression of STOC and morphological parameters in the lung from control, CIH-treated, and 2-APB-treated rats. We found correlations between RVSP and increased medial layer and STOC pulmonary levels. 2-APB-treated rats showed a correlation between RVSP and the medial layer thickness, α-actin-ir, and STOC, whereas RVSP did not correlate with MDA levels in CIH and 2-APB-treated rats. CIH rats showed correlations between lung MDA levels and the gene expression of TRPC1 and TRPC4. These results suggest that STOC channels play a key role in developing CIH-induced PH that is independent from lung oxidative stress.


Assuntos
Hipertensão Pulmonar , Hipertensão , Ratos , Animais , Hipertensão Pulmonar/etiologia , Remodelação Vascular , Estresse Oxidativo , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA