Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e54856, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215680

RESUMO

Clostridium perfringens is one of the most widely distributed and successful pathogens producing an impressive arsenal of toxins. One of the most potent toxins produced is the C. perfringens ß-toxin (CPB). This toxin is the main virulence factor of type C strains. We describe the cryo-electron microscopy (EM) structure of CPB oligomer. We show that CPB forms homo-octameric pores like the hetero-oligomeric pores of the bi-component leukocidins, with important differences in the receptor binding region and the N-terminal latch domain. Intriguingly, the octameric CPB pore complex contains a second 16-stranded ß-barrel protrusion atop of the cap domain that is formed by the N-termini of the eight protomers. We propose that CPB, together with the newly identified Epx toxins, is a member a new subclass of the hemolysin-like family. In addition, we show that the ß-barrel protrusion domain can be modified without affecting the pore-forming ability, thus making the pore particularly attractive for macromolecule sensing and nanotechnology. The cryo-EM structure of the octameric pore of CPB will facilitate future developments in both nanotechnology and basic research.


Assuntos
Clostridium perfringens , Microscopia Crioeletrônica
2.
Vet Res ; 55(1): 52, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622656

RESUMO

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Assuntos
Infecções por Clostridium , Animais , Camundongos , Infecções por Clostridium/veterinária , Clostridium perfringens , Interleucina-6 , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Imunidade Treinada , Fator de Necrose Tumoral alfa/metabolismo
3.
Avian Pathol ; : 1-16, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776185

RESUMO

Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-ß and transforming growth factor-ß4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.

4.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971814

RESUMO

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Assuntos
Animais Selvagens , Aves , Infecções por Clostridium , Clostridium perfringens , Farmacorresistência Bacteriana Múltipla , Variação Genética , Clostridium perfringens/genética , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/efeitos dos fármacos , Animais , Aves/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Animais Selvagens/microbiologia , Fezes/microbiologia , Tipagem de Sequências Multilocus/veterinária , Antibacterianos/farmacologia , Doenças das Aves/microbiologia , Doenças das Aves/epidemiologia , Testes de Sensibilidade Microbiana/veterinária
5.
BMC Public Health ; 24(1): 1578, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867266

RESUMO

BACKGROUND: . Splash pads for recreational purposes are widespread. Using these pads can pose a health risk if they lack installation regulation and water quality supervision. Our aim was to describe a waterborne disease outbreak caused by Clostridium perfringens and Cryptosporidium spp. in a Barcelona district and the measures taken for its control. METHODS: . On August 2018, 71 cases of acute gastroenteritis were detected, affecting people who used a splash pad or were in contact with a user. Microbiological and environmental investigations were carried out. A descriptive analysis of the sample and Poisson regression models adjusted for age and sex were performed, obtaining frequencies, median values, and adjusted prevalence ratios with their 95% confidence intervals. RESULTS: The median age of the cases was 6.7 years, 27 (38%) required medical care, and three (4.2%) were hospitalized. The greater the number of times a person entered the area, the greater the number of symptoms and their severity. Nineteen (76%) of the 25 stool samples collected from cases showed the presence of one or both pathogens. Environmental investigations showed deficiencies in the facilities and identified the presence of both species in the splash pad. Health education and hygiene measures were carried out, and 14 days after the closure of the facilities, no more cases related to the pad were recorded. CONCLUSIONS: . Specific regulations are needed on the use of splash pads for recreational purposes. Until these regulations are in place, these types of facility should comply with the regulations that apply to swimming pools and spas, including those related to the design of the tanks, water recirculation systems, and adequate disinfection systems.


Assuntos
Infecções por Clostridium , Criptosporidiose , Cryptosporidium , Surtos de Doenças , Humanos , Masculino , Feminino , Espanha/epidemiologia , Cryptosporidium/isolamento & purificação , Infecções por Clostridium/epidemiologia , Criptosporidiose/epidemiologia , Adulto , Criança , Adolescente , Pré-Escolar , Pessoa de Meia-Idade , Adulto Jovem , Clostridium perfringens/isolamento & purificação , Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Doenças Transmitidas pela Água/epidemiologia , Lactente , Microbiologia da Água
6.
Food Microbiol ; 120: 104485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431330

RESUMO

This study aimed to elucidate the distribution, transmission, and cross-contamination of Clostridium perfringens during the breeding and milking process from dairy farms. The prevalence of 22.3% (301/1351) yielded 494 C. perfringens isolates; all isolates were type A, except for one type D, and 69.8% (345/494) of the isolates carried atyp. cpb2 and only 0.6% (3/494) of the isolates carried cons. cpb2. C. perfringens detected throughout the whole process but without type F. 150 isolates were classified into 94 pulsed-field gel electrophoresis (PFGE) genotypes; among them, six clusters contained 34 PFGE genotypes with 58.0% isolates which revealed epidemic correlation and genetic diversity; four PFGE genotypes (PT57, PT9, PT61, and PT8) were the predominant genotypes. The isolates from different farms demonstrated high homology. Our study confirmed that C. perfringens demonstrated broad cross-contamination from nipples and hides of dairy cattle, followed by personnel and tools and air-introduced raw milk during the milking process. In conclusion, raw milk could serve as a medium for the transmission of C. perfringens, which could result in human food poisoning. Monitoring and controlling several points of cross-contamination during the milking process are essential as is implementing stringent hygiene measures to prevent further spread and reduce the risk of C. perfringens infection.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Bovinos , Humanos , Clostridium perfringens/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Leite , Prevalência , Fazendas , Genótipo , Cruzamento
7.
Anaerobe ; 87: 102839, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552896

RESUMO

Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. Their prevalence in diverse ecosystems requires a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs and as commensals or infecting pathogens in human and animal populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.


Assuntos
Infecções por Clostridium , Saúde Única , Humanos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Animais , Clostridium/genética , Clostridium/isolamento & purificação , Clostridium/classificação , Surtos de Doenças/prevenção & controle , Genômica/métodos , Toxinas Bacterianas/genética
8.
Anaerobe ; 87: 102844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582142

RESUMO

The small acid-soluble proteins are found in all endospore-forming organisms and are a major component of spores. Through their DNA binding capabilities, the SASPs shield the DNA from outside insults (e.g., UV and genotoxic chemicals). The absence of the major SASPs results in spores with reduced viability when exposed to UV light and, in at least one case, the inability to complete sporulation. While the SASPs have been characterized for decades, some evidence suggests that using newer technologies to revisit the roles of the SASPs could reveal novel functions in spore regulation.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Esporos Bacterianos/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Raios Ultravioleta , Bactérias/metabolismo , Bactérias/genética
9.
Anaerobe ; 87: 102856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609034

RESUMO

Clostridium perfringens, a Gram-positive bacterium, causes intestinal diseases in humans and livestock through its toxins, related to alpha toxin (CPA), beta toxin (CPB), C. perfringens enterotoxin (CPE), epsilon toxin (ETX), Iota toxin (ITX), and necrotic enteritis B-like toxin (NetB). These toxins disrupt intestinal barrier, leading to various cell death mechanisms such as necrosis, apoptosis, and necroptosis. Additionally, non-toxin factors like adhesins and degradative enzymes contribute to virulence by enhancing colonization and survival of C. perfringens. A vicious cycle of intestinal barrier breach, misregulated cell death, and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. Understanding these mechanisms is essential for developing targeted therapies against C. perfringens-associated intestinal diseases.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Clostridium perfringens , Células Epiteliais , Humanos , Animais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Células Epiteliais/microbiologia , Células Epiteliais/efeitos dos fármacos , Clostridium perfringens/patogenicidade , Clostridium perfringens/fisiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
10.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612529

RESUMO

Clostridium perfringens is a kind of anaerobic Gram-positive bacterium that widely exists in the intestinal tissue of humans and animals. And the main virulence factor in Clostridium perfringens is its exotoxins. Clostridium perfringens type C is the main strain of livestock disease, its exotoxins can induce necrotizing enteritis and enterotoxemia, which lead to the reduction in feed conversion, and a serious impact on breeding production performance. Our study found that treatment with exotoxins reduced cell viability and triggered intracellular reactive oxygen species (ROS) in human mononuclear leukemia cells (THP-1) cells. Through transcriptome sequencing analysis, we found that the levels of related proteins such as heme oxygenase 1 (HO-1) and ferroptosis signaling pathway increased significantly after treatment with exotoxins. To investigate whether ferroptosis occurred after exotoxin treatment in macrophages, we confirmed that the protein expression levels of antioxidant factors glutathione peroxidase 4/ferroptosis-suppressor-protein 1/the cystine/glutamate antiporter solute carrier family 7 member 11 (GPX4/FSP1/xCT), ferroptosis-related protein nuclear receptor coactivator 4/transferrin/transferrin receptor (NCOA4/TF/TFR)/ferritin and the level of lipid peroxidation were significantly changed. Based on the above results, our study suggested that Clostridium perfringens type C exotoxins can induce macrophage injury through oxidative stress and ferroptosis.


Assuntos
Antioxidantes , Clostridium perfringens , Animais , Humanos , Antiporters , Exotoxinas , Ácido Glutâmico
11.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338877

RESUMO

Multidrug-resistant Clostridium perfringens infections are a major threat to the poultry industry. Effective alternatives to antibiotics are urgently needed to prevent these infections and limit the spread of multidrug-resistant bacteria. The aim of the study was to produce by chemical synthesis a set of enterocins of different subgroups of class II bacteriocins and to compare their spectrum of inhibitory activity, either alone or in combination, against a panel of twenty C. perfringens isolates. Enterocins A, P, SEK4 (class IIa bacteriocins), B (unsubgrouped class II bacteriocin), and L50 (class IId leaderless bacteriocin) were produced by microwave-assisted solid-phase peptide synthesis. Their antimicrobial activity was determined by agar well diffusion and microtitration methods against twenty C. perfringens isolates and against other pathogens. The FICINDEX of different combinations of the selected enterocins was calculated in order to identify combinations with synergistic effects. The results showed that synthetic analogs of L50A and L50B were the most active against C. perfringens. These peptides also showed the broadest spectrum of activity when tested against other non-clostridial indicator strains, including Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, Streptococcus suis, Streptococcus pyogenes, Enterococcus cecorum, Enterococcus faecalis, as well as Gram-negative bacteria (Campylobacter coli and Pseudomonas aeruginosa), among others. The selected synthetic enterocins were combined on the basis of their different mechanisms of action, and all combinations tested showed synergy or partial synergy against C. perfringens. In conclusion, because of their high activity against C. perfringens and other pathogens, the use of synthetic enterocins alone or as a consortium can be a good alternative to the use of antibiotics in the poultry sector.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Clostridium perfringens , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Hidrocarbonetos Aromáticos com Pontes
12.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611721

RESUMO

Despite the technologies applied to food production, microbial contamination and chemical deterioration are still matters of great concern. In order to limit these phenomena, new natural approaches should be applied. In this context, the present study aimed to assess the antioxidant and anti-Clostridial effects of two different polyphenolic extracts derived from olive mill vegetation water, one liquid (LE) and one encapsulated (EE). The extracts have been preliminary characterized using Liquid Chromatography Quadrupole Time-Of Flight spectrometry. The Oxygen Radical Absorbance Capacity method was used to determine the antioxidant capacity, registering a higher value for EE compared to that for LE (3256 ± 85 and 2446 ± 13 µgTE/g, respectively). The antibacterial activity against C. perfringens, C. botulinum and C. difficile was studied by the agar well diffusion method, MIC and MBC determination and a time-kill test. The results confirm that EE and LE are able to limit microbial growth, albeit with minor effects when the phenolic compounds are encapsulated. Further studies are needed to evaluate the possible application of these extracts in food systems.


Assuntos
Clostridioides difficile , Olea , Águas Residuárias , Antioxidantes/farmacologia , Clostridium , Clostridium perfringens
13.
Br Poult Sci ; 65(2): 129-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416108

RESUMO

1. This study evaluated the effectiveness of yeast (Saccharomyces cerevisiae) cell wall (YCW) supplementation on the growth performance, carcase characteristics, serum biomarkers, liver function, ileal histology and microbiota of broiler chickens challenged with Clostridium perfringens (C. perfringens).2. In a 35-d trial, 240 chicks aged 1-d-old were randomly assigned to one of four treatment groups, each with 10 replicates: control (CON) with no challenge or additives, challenged with C. perfringens (CHAL), CHAL and supplemented with YCW at either 0.25 g/kg (YCW0.25) or 0.5 g/kg (YCW0.5).3. In comparison to CON, the CHAL birds had reduced growth performance, survival rate, dressing percentage, breast meat yield, levels of total protein (TP), globulin (GLO), glucose (GLU), total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD), as well as a decreased Lactobacillus population (P < 0.01). Additionally, this group showed elevated levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and C. perfringens count (P < 0.01). Compared to CHAL, the YCW0.25 or YCW0.5 groups had improved growth performance, survival rate, dressing percentage, breast meat yield, levels of TP, GLO, GLU, and T-AOC, as well as the activities of T-SOD, GOT, and GPT, villus height, villus surface area, villus height to crypt depth ratio, and the populations of both Lactobacillus and C. perfringens; (P < 0.01).4. The data suggested that YCW supplementation at either 0.25 or 0.50 g/kg can restore the growth performance of broiler chickens during a C. perfringens challenge.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Saccharomyces cerevisiae , Galinhas , Prebióticos , Infecções por Clostridium/veterinária , Infecções por Clostridium/patologia , Suplementos Nutricionais , Antioxidantes , Parede Celular , Superóxido Dismutase , Ração Animal/análise , Dieta/veterinária
14.
Infect Immun ; 91(6): e0005323, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212696

RESUMO

Clostridium perfringens type F strains cause food poisoning (FP) when they sporulate and produce C. perfringens enterotoxin (CPE) in the intestines. Most type F FP strains carry a chromosomal cpe gene (c-cpe strains). C. perfringens produces up to three different sialidases, named NanH, NanI, and NanJ, but some c-cpe FP strains carry only nanJ and nanH genes. This study surveyed a collection of such strains and showed that they produce sialidase activity when cultured in Todd-Hewitt broth (TH) (vegetative cultures) or modified Duncan-Strong (MDS) medium (sporulating cultures). Sialidase null mutants were constructed in 01E809, a type F c-cpe FP strain carrying the nanJ and nanH genes. Characterization of those mutants identified NanJ as the major sialidase of 01E809 and showed that, in vegetative and sporulating cultures, nanH expression affects nanJ expression and vice versa; those regulatory effects may involve media-dependent changes in transcription of the codY or ccpA genes but not nanR. Additional characterization of these mutants demonstrated the following: (i) NanJ contributions to growth and vegetative cell survival are media dependent, with this sialidase increasing 01E809 growth in MDS but not TH; (ii) NanJ enhances 24-h vegetative cell viability in both TH and MDS cultures; and (iii) NanJ is important for 01E809 sporulation and, together with NanH, CPE production in MDS cultures. Lastly, NanJ was shown to increase CPE-induced cytotoxicity and CH-1 pore formation in Caco-2 cells. Collectively, these results suggest that NanJ may have a contributory role in FP caused by type F c-cpe strains that carry the nanH and nanJ genes.


Assuntos
Infecções por Clostridium , Doenças Transmitidas por Alimentos , Humanos , Clostridium perfringens , Neuraminidase/genética , Neuraminidase/metabolismo , Células CACO-2 , Enterotoxinas/genética
15.
BMC Genomics ; 24(1): 16, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635624

RESUMO

BACKGROUND: As an important regulator of autoimmune responses and inflammation, S100A9 may serve as a therapeutic target in inflammatory diseases. However, the role of S100A9 in Clostridium perfringens type C infectious diarrhea is poorly studied. The aim of our study was to screen downstream target genes regulated by S100A9 in Clostridium perfringens beta2 (CPB2) toxin-induced IPEC-J2 cell injury. We constructed IPEC-J2 cells with S100A9 knockdown and a CPB2-induced cell injury model, screened downstream genes regulated by S100A9 using RNA-Seq technique, and performed functional enrichment analysis. The function of S100A9 was verified using molecular biology techniques. RESULTS: We identified 316 differentially expressed genes (DEGs), of which 221 were upregulated and 95 were downregulated. Functional enrichment analysis revealed that the DEGs were significantly enriched in cilium movement, negative regulation of cell differentiation, immune response, protein digestion and absorption, and complement and coagulation cascades. The key genes of immune response were TNF, CCL1, CCR7, CSF2, and CXCL9. When CPB2 toxin-induced IPEC-J2 cells overexpressed S100A9, Bax expression increased, Bcl-2 expression and mitochondrial membrane potential decreased, and SOD activity was inhibited. CONCLUSION: In conclusion, S100A9 was involved in CPB2-induced inflammatory response in IPEC-J2 cells by regulating the expression of downstream target genes, namely, TNF, CCL1, CCR7, CSF2, and CXCL9; promoting apoptosis; and aggravating oxidative cell damage. This study laid the foundation for further study on the regulatory mechanism underlying piglet diarrhea.


Assuntos
Toxinas Bacterianas , Calgranulina B , Intestinos , Animais , Clostridium perfringens , Diarreia , Células Epiteliais/metabolismo , Receptores CCR7/metabolismo , Suínos , Calgranulina B/metabolismo , Toxinas Bacterianas/efeitos adversos , Inflamação
16.
Curr Issues Mol Biol ; 45(3): 2309-2325, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36975519

RESUMO

LncRNAs play important roles in resisting bacterial infection via host immune and inflammation responses. Clostridium perfringens (C. perfringens) type C is one of the main bacteria causing piglet diarrhea diseases, leading to major economic losses in the pig industry worldwide. In our previous studies, piglets resistant (SR) and susceptible (SS) to C. perfringens type C were identified based on differences in host immune capacity and total diarrhea scores. In this paper, the RNA-Seq data of the spleen were comprehensively reanalyzed to investigate antagonistic lncRNAs. Thus, 14 lncRNAs and 89 mRNAs were differentially expressed (DE) between the SR and SS groups compared to the control (SC) group. GO term enrichment, KEGG pathway enrichment and lncRNA-mRNA interactions were analyzed to identify four key lncRNA targeted genes via MAPK and NF-κB pathways to regulate cytokine genes (such as TNF-α and IL-6) against C. perfringens type C infection. The RT-qPCR results for six selected DE lncRNAs and mRNAs are consistent with the RNA-Seq data. This study analyzed the expression profiling of lncRNAs in the spleen of antagonistic and sensitive piglets and found four key lncRNAs against C. perfringens type C infection. The identification of antagonistic lncRNAs can facilitate investigations into the molecular mechanisms underlying resistance to diarrhea in piglets.

17.
Appl Environ Microbiol ; 89(12): e0161923, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38051072

RESUMO

IMPORTANCE: Clostridium perfringens causes gas gangrene and food poisoning in humans, and monitoring this bacterium is important for public health. Although whole-genome sequencing is useful to comprehensively understand the virulence, resistome, and global genetic relatedness of bacteria, limited genomic data from environmental sources and developing countries hamper our understanding of the richness of the intrinsic genomic diversity of this pathogen. Here, we successfully accumulated the genetic data on C. perfringens strains isolated from hospital effluent and provided the first evidence that predicted pathogenic C. perfringens may be disseminated in the clinical environment in Ghana. Our findings suggest the importance of risk assessment in the environment as well as the clinical setting to mitigate the potential outbreak of C. perfringens food poisoning in Ghana.


Assuntos
Infecções por Clostridium , Doenças Transmitidas por Alimentos , Humanos , Clostridium perfringens , Águas Residuárias , Gana , Doenças Transmitidas por Alimentos/microbiologia , Infecções por Clostridium/microbiologia
18.
Cytokine ; 169: 156276, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37339556

RESUMO

Clostridium perfringens (C. perfringens) is an important Gram-positive anaerobic spore-forming pathogen that provokes life-threatening gas gangrene and acute enterotoxaemia, although it colonizes as a component of the symbiotic bacteria in humans and animals. However, the mechanisms by which C. perfringens is cleared from the host remains poorly understood, thereby impeding the development of novel strategies for control this infection. Here, we uncover a beneficial effect of extracellular traps (ETs) formation on bacterial killing and clearance by phagocytes. C. perfringens strain ATCC13124, and wild-type isolates CP1 and CP3 markedly trigger ETs formation in macrophages and neutrophils. As expected, visualization of DNA decorated with histone, myeloperoxidase (MPO) and neutrophils elastase (NE) in C. perfringens-triggered classical ETs structures. Notably, the bacteria-induced ETs formation is an ERK1/2-, P38 MAPK-, store-operated calcium entry (SOCE)-, NADPH oxidase-, histone-, NE-, and MPO-dependent process, and is independent of LDH activity. Meanwhile, the defect of bactericidal activity is mediated by impairing ETs formation in phagocytes. Moreover, In vivo studies indicated that degradation of ETs by DNase I administration leads to a defect in the protection against experimental gas gangrene, with higher mortality rates, exacerbated tissue damage, and more bacterial colonization. Together, these results suggest that phagocyte ETs formation is essential for the host defense against C. perfringens infection.


Assuntos
Armadilhas Extracelulares , Gangrena Gasosa , Humanos , Animais , Gangrena Gasosa/microbiologia , Histonas , Fagócitos , Neutrófilos , Clostridium perfringens/genética
19.
Mult Scler ; 29(9): 1057-1063, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480283

RESUMO

Clostridium perfringens epsilon toxin is associated with enterotoxaemia in livestock. More recently, it is proposed to play a role in multiple sclerosis (MS) in humans. Compared to matched controls, strains of C. perfringens which produce epsilon toxin are significantly more likely to be isolated from the gut of MS patients and at significantly higher levels; similarly, sera from MS patients are significantly more likely to contain antibodies to epsilon toxin. Epsilon toxin recognises the myelin and lymphocyte (MAL) protein receptor, damaging the blood-brain barrier and brain cells expressing MAL. In the experimental autoimmune encephalomyelitis model of MS, the toxin enables infiltration of immune cells into the central nervous system, inducing an MS-like disease. These studies provide evidence that epsilon toxin plays a role in MS, but do not yet fulfil Koch's postulates in proving a causal role.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/metabolismo , Clostridium perfringens , Sistema Nervoso Central , Encéfalo , Bainha de Mielina/metabolismo
20.
BMC Infect Dis ; 23(1): 810, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978351

RESUMO

BACKGROUND: The breast milk bank is a professional organization that collects donor human milk (DHM) for special medical needs by recruiting qualified breast milk donors. Such organizations are also responsible for the disinfection, processing, testing, storage, distribution, and use of breast milk. As DHM is a biological product, it may get contaminated. Microbiological testing is the final step to determine microbial contamination of DHM. However, a universal method for the microbiological analysis of DHM in breast milk banks globally is lacking.DHM without strict screening may become a potential carrier of pathogens and seriously threaten the health of infants. Clostridium perfringens, a gram-positive anaerobic bacterium, is capable of causing wound infections, including gas gangrene, enteritis/enterocolitis, and enterotoxemia. Here, the first case of C. perfringens detected in DHM has been reported to facilitate the identification of such contamination in breast milk banks. CASE PRESENTATION: A breastfeeding mother donated 3000 mL of milk to the breast milk bank of the First Affiliated Hospital of the Army Medical University(over 2900 beds and patient receiving capacity of over 132,000), Chongqing, China. The milk sample was subjected to microbiological screening using liquid enrichment, followed by anaerobic and aerobic culturing. The results revealed the growth of C. perfringens in the anaerobic culture medium, but no bacteria or yeast-like fungi were observed in the aerobic culture medium. The donor did not exhibit any clinical symptoms, and her routine blood results and body temperature were normal. However, the infant fed with her milk had recurrent bloody stools. Breast milk bank infection control emergency handling as well as environmental sampling and investigation revealed that the cause was contamination of the donor's home-use breast pump with C. perfringens. The infant no longer experienced bloody stool once the donor changed the breast pump. CONCLUSIONS: C. perfringens can enter breast milk from contaminated pumping environments or devices, thus causing illness in infants. The microbiological testing of DHM in breast milk banks can be accomplished using liquid enrichment, along with anaerobic and aerobic culture, which is of immense significance in improving the standards for microbiological screening, DHM safety, and infant health.


Assuntos
Clostridium perfringens , Leite Humano , Humanos , Lactente , Feminino , Animais , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Aleitamento Materno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA