Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.494
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2319427121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442175

RESUMO

Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.

2.
Proc Natl Acad Sci U S A ; 120(45): e2309156120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903261

RESUMO

Cobalt-containing alloys are useful for orthopedic applications due to their low volumetric wear rates, corrosion resistance, high mechanical strength, hardness, and fatigue resistance. Unfortunately, these prosthetics release significant levels of cobalt ions, which was only discovered after their widespread implantation into patients requiring hip replacements. These cobalt ions can result in local toxic effects-including peri-implant toxicity, aseptic loosening, and pseudotumor-as well as systemic toxic effects-including neurological, cardiovascular, and endocrine disorders. Failing metal-on-metal (MoM) implants usually necessitate painful, risky, and costly revision surgeries. To treat metallosis arising from failing MoM implants, a synovial fluid-mimicking chelator was designed to remove these metal ions. Hyaluronic acid (HA), the major chemical component of synovial fluid, was functionalized with British anti-Lewisite (BAL) to create a chelator (BAL-HA). BAL-HA effectively binds cobalt and rescues in vitro cell vitality (up to 370% of cells exposed to IC50 levels of cobalt) and enhances the rate of clearance of cobalt in vivo (t1/2 from 48 h to 6 h). A metallosis model was also created to investigate our therapy. Results demonstrate that BAL-HA chelator system is biocompatible and capable of capturing significant amounts of cobalt ions from the hip joint within 30 min, with no risk of kidney failure. This chelation therapy has the potential to mitigate cobalt toxicity from failing MoM implants through noninvasive injections into the joint.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Prótese de Quadril/efeitos adversos , Ácido Hialurônico , Dimercaprol , Terapia por Quelação , Falha de Prótese , Artroplastia de Quadril/efeitos adversos , Metais , Cobalto , Quelantes/uso terapêutico , Íons
3.
Proc Natl Acad Sci U S A ; 120(16): e2219923120, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040400

RESUMO

The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.

4.
Proc Natl Acad Sci U S A ; 120(29): e2305705120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428922

RESUMO

The assimilation of antibiotic resistance genes (ARGs) by pathogenic bacteria poses a severe threat to public health. Here, we reported a dual-reaction-site-modified CoSA/Ti3C2Tx (single cobalt atoms immobilized on Ti3C2Tx MXene) for effectively deactivating extracellular ARGs via peroxymonosulfate (PMS) activation. The enhanced removal of ARGs was attributed to the synergistic effect of adsorption (Ti sites) and degradation (Co-O3 sites). The Ti sites on CoSA/Ti3C2Tx nanosheets bound with PO43- on the phosphate skeletons of ARGs via Ti-O-P coordination interactions, achieving excellent adsorption capacity (10.21 × 1010 copies mg-1) for tetA, and the Co-O3 sites activated PMS into surface-bond hydroxyl radicals (•OHsurface), which can quickly attack the backbones and bases of the adsorbed ARGs, resulting in the efficient in situ degradation of ARGs into inactive small molecular organics and NO3. This dual-reaction-site Fenton-like system exhibited ultrahigh extracellular ARG degradation rate (k > 0.9 min-1) and showed the potential for practical wastewater treatment in a membrane filtration process, which provided insights for extracellular ARG removal via catalysts design.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Cobalto , Titânio/farmacologia , Adsorção , Águas Residuárias , Resistência Microbiana a Medicamentos/genética
5.
Proc Natl Acad Sci U S A ; 120(26): e2212037120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339197

RESUMO

From 2000 through 2020, demand for cobalt to manufacture batteries grew 26-fold. Eighty-two percent of this growth occurred in China and China's cobalt refinery production increased 78-fold. Diminished industrial cobalt mine production in the early-to-mid 2000s led many Chinese companies to purchase ores from artisanal cobalt miners in the Democratic Republic of the Congo (DRC), many of whom have been found to be children. Despite extensive research on artisanal cobalt mining, fundamental questions about its production remain unanswered. This gap is addressed here by estimating artisanal cobalt production, processing, and trade. The results show that, while total DRC cobalt mine production grew from 11,000 metric tons (t) in 2000 to 98,000 t in 2020, artisanal production only grew from 1,000 to 2,000 t in 2000 to 9,000 to 11,000 t in 2020 (with a peak of 17,000 to 21,000 t in 2018). Artisanal production's share of world and DRC cobalt mine production peaked around 2008 at 18 to 23% and 40 to 53%, respectively, before trending down to 6 to 8% and 9 to 11% in 2020, respectively. Artisanal production was chiefly exported to China or processed within the DRC by Chinese firms. An average of 72 to 79% of artisanal production was processed at facilities within the DRC from 2016 through 2020. As such, these facilities may be potential monitoring points for artisanal production and its downstream consumers. This finding may help to support responsible sourcing initiatives and better address abuses related to artisanal cobalt mining by focusing local efforts at the artisanal processing facilities through which most artisanal cobalt production flows.


Assuntos
Cobalto , Mineração , Humanos , Criança , República Democrática do Congo , Indústrias , China
6.
Proc Natl Acad Sci U S A ; 119(29): e2123450119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858301

RESUMO

Efficient n = O bond activation is crucial for the catalytic reduction of nitrogen compounds, which is highly affected by the construction of active centers. In this study, n = O bond activation was achieved by a single-atom catalyst (SAC) with phosphorus anchored on a Co active center to form intermediate N-species for further hydrogenation and reduction. Unique phosphorus-doped discontinuous active sites exhibit better n = O activation performance than conventional N-cooperated single-atom sites, with a high Faradic efficiency of 92.0% and a maximum ammonia yield rate of 433.3 µg NH4·h-1·cm-2. This approach of constructing environmental sites through heteroatom modification significantly improves atom efficiency and will guide the design of future functional SACs with wide-ranging applications.

7.
Proc Natl Acad Sci U S A ; 119(45): e2214089119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322768

RESUMO

Oxygen reduction reaction (ORR), an essential reaction in metal-air batteries and fuel cells, still faces many challenges, such as exploiting cost-effective nonprecious metal electrocatalysts and identifying their surface catalytic sites. Here we introduce bulk defects, Frank partial dislocations (FPDs), into metallic cobalt to construct a highly active and stable catalyst and demonstrate an atomic-level insight into its surface terminal catalysis. Through thermally dealloying bimetallic carbide (Co3ZnC), FPDs were in situ generated in the final dealloyed metallic cobalt. Both theoretical calculations and atomic characterizations uncovered that FPD-driven surface terminations create a distinctive type of surface catalytic site that combines concave geometry and compressive strain, and this two-in-one site intensively weakens oxygen binding. When being evaluated for the ORR, the catalyst exhibits onset and half-wave potentials of 1.02 and 0.90 V (versus the reversible hydrogen electrode), respectively, and negligible activity decay after 30,000 cycles. Furthermore, zinc-air batteries and H2-O2/air fuel cells built with this catalyst also achieve remarkable performance, making it a promising alternative to state-of-the-art Pt-based catalysts. Our findings pave the way for the use of bulk defects to upgrade the catalytic properties of nonprecious electrocatalysts.

8.
Nano Lett ; 24(3): 852-858, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38051031

RESUMO

Currently, the hydroformylation of short olefins is operated almost exclusively by using Rh catalysts. Considering the high cost and scarcity of rhodium resources, it is important to develop non-noble metal catalysts toward hydroformylation. Herein, we report an efficient cobalt-based catalyst rich in interfacial sites between metallic and oxidized cobalt species for the hydroformylation of short olefin, propene, under a moderate syngas pressure. The catalyst exhibited a high specific activity of 252 mol molCo-1 h-1 in toluene under 2 bar of propene and 40 bar of CO/H2 mixed gas (CO/H2 = 1:1) at 160 °C. According to mechanistic studies, the interface of metallic and oxidized cobalt species promoted the adsorption of CO and propene. Moreover, the interfacial sites lowered the energy barrier for CO* hydrogenation and C-C coupling compared with metallic cobalt.

9.
Nano Lett ; 24(5): 1687-1694, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38253561

RESUMO

Revealing the in-depth structure-property relationship and designing specific capacity electrodes are particularly important for supercapacitors. Despite many efforts made to tune the composition and electronic structure of cobalt oxide for pseudocapacitance, insight into the [CoO]6 octahedron from the microstructure is still insufficient. Herein, we present a tunable [CoO]6 octahedron microstructure in LiCoO2 by a chemical delithiation process. The c-strained strain of the [CoO]6 octahedron is induced to form higher valence Co ions, and the (003) crystalline layer spacing increases to allow more rapid participation of OH- in the redox reaction. Interestingly, the specific capacity of L0.75CO2 is nearly four times higher than that of LiCoO2 at 10 mA g-1. The enhanced activity originated from the asymmetric strain [CoO]6 octahedra, resulting in enhanced electronic conductivity and Co-O hybridization for accelerated redox kinetics. This finding provides new insights into the modification strategy for pseudocapacitive transition metal oxides.

10.
Glia ; 72(4): 759-776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225726

RESUMO

Regenerative abilities are not evenly distributed across the animal kingdom. The underlying modalities are also highly variable. Retinal repair can involve the mobilization of different cellular sources, including ciliary marginal zone (CMZ) stem cells, the retinal pigmented epithelium (RPE), or Müller glia. To investigate whether the magnitude of retinal damage influences the regeneration modality of the Xenopus retina, we developed a model based on cobalt chloride (CoCl2 ) intraocular injection, allowing for a dose-dependent control of cell death extent. Analyses in Xenopus laevis revealed that limited CoCl2 -mediated neurotoxicity only triggers cone loss and results in a few Müller cells reentering the cell cycle. Severe CoCl2 -induced retinal degeneration not only potentializes Müller cell proliferation but also enhances CMZ activity and unexpectedly triggers RPE reprogramming. Surprisingly, reprogrammed RPE self-organizes into an ectopic mini-retina-like structure laid on top of the original retina. It is thus likely that the injury paradigm determines the awakening of different stem-like cell populations. We further show that these cellular sources exhibit distinct neurogenic capacities without any bias towards lost cells. This is particularly striking for Müller glia, which regenerates several types of neurons, but not cones, the most affected cell type. Finally, we found that X. tropicalis also has the ability to recruit Müller cells and reprogram its RPE following CoCl2 -induced damage, whereas only CMZ involvement was reported in previously examined degenerative models. Altogether, these findings highlight the critical role of the injury paradigm and reveal that three cellular sources can be reactivated in the very same degenerative model.


Assuntos
Cobalto , Degeneração Retiniana , Animais , Xenopus laevis/fisiologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Retina , Regeneração/fisiologia , Proliferação de Células , Neuroglia/metabolismo
11.
BMC Plant Biol ; 24(1): 126, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383286

RESUMO

Heavy metal stress affects crop growth and yields as wheat (Triticum aestivum L.) growth and development are negatively affected under heavy metal stress. The study examined the effect of cobalt chloride (CoCl2) stress on wheat growth and development. To alleviate this problem, a pot experiment was done to analyze the role of sulfur-rich thiourea (STU) in accelerating the defense system of wheat plants against cobalt toxicity. The experimental treatments were, i) Heavy metal stress (a) control and (b) Cobalt stress (300 µM), ii) STU foliar applications; (a) control and (b) 500 µM single dose was applied after seven days of stress, and iii) Wheat varieties (a) FSD-2008 and (b) Zincol-2016. The results revealed that cobalt stress decreased chlorophyll a by 10%, chlorophyll b by 16%, and carotenoids by 5% while foliar application of STU increased these photosynthetic pigments by 16%, 15%, and 15% respectively under stress conditions as in contrast to control. In addition, cobalt stress enhances hydrogen peroxide production by 11% and malondialdehyde (MDA) by 10%. In comparison, STU applications at 500 µM reduced the production of these reactive oxygen species by 5% and by 20% by up-regulating the activities of antioxidants. Results have revealed that the activities of SOD improved by 29%, POD by 25%, and CAT by 28% under Cobalt stress. Furthermore, the foliar application of STU significantly increased the accumulation of osmoprotectants as TSS was increased by 23% and proline was increased by 24% under cobalt stress. Among wheat varieties, FSD-2008 showed better adaptation under Cobalt stress by showing enhanced photosynthetic pigments and antioxidant activities compared to Zincol-2016. In conclusion, the foliar-applied STU can alleviate the negative impacts of Cobalt stress by improving plant physiological attributes and upregulating the antioxidant defense system in wheat.


Assuntos
Antioxidantes , Metais Pesados , Antioxidantes/farmacologia , Triticum , Clorofila A , Cobalto/toxicidade
12.
BMC Plant Biol ; 24(1): 287, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627664

RESUMO

Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.


Assuntos
Antioxidantes , Raphanus , Prolina , Cobalto/farmacologia , Estresse Salino , Salinidade
13.
Small ; 20(15): e2307006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992252

RESUMO

Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs. Applying a perpendicular magnetic field of 50 mT, the nematic droplets align two by two through dipole-dipole interactions. By incorporating it into a silicone matrix consisting mainly of polydimethylsiloxane, a 3D printable ink is formulated and crosslinked under various shapes. In this environment, the cobalt complex is stabilized in an LC state at room temperature and, due to its anisotropy, facilitates the mechanical response to magnetic stimuli. The resulting objects can be easily manipulated on fluid or rough surfaces using external magnetic fields, behave like magnets by themselves, and show reversible locomotion.

14.
Small ; : e2401168, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616769

RESUMO

Photocatalytic water splitting using covalent organic frameworks (COFs) is a promising approach for harnessing solar energy. However, challenges such as slow kinetic dynamics in the photocatalytic oxygen evolution reaction (OER) and COFs' self-oxidation hinder its progress. In this study, an enamine-based COF coordinated is introduced with cobalt dichloride, CoCl2 (CoCl2-TpBPy). The coordination of cobalt ions with bipyridines in CoCl2-TpBPy enhances charge-carrier separation and migration, leading to effective photocatalytic OER. Under visible light irradiation, CoCl2-TpBPy achieves a notable OER rate of up to 1 mmol·g-1·h-1, surpassing the reported organic semiconductor analogs. Additionally, CoCl2-TpBPy shows minimal nitrogen evolution compared to TpBPy and ethanol-treated TpBPy (E-TpBPy), indicating cobalt plays a pivotal role in improving charge utilization and minimizing photo-oxidation. In situ X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses revealed that Co(IV) species are key to the high OER efficiency. This work highlights Co(IV) species in the efficient OER and inhibiting photo-oxidation of CoCl2-TpBPy.

15.
Small ; : e2312151, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438931

RESUMO

Rationally and precisely tuning the composition and structure of materials is a viable strategy to improve electrochemical deionization (EDI) performances, which yet faces enormous challenges. Herein, an eco-friendly biomimetic mineralization synthetic strategy is developed to synthesize the flower-like cobalt selenide/reduced graphene oxide (Bio-CoSe2 /rGO) composites and used as advanced sodium ion adsorption electrodes. Benefiting from the slow and controllable reaction kinetics provided by the biomimetic mineralization process, the flower-like CoSe2 is uniformly constructed in the rGO, which is endowed with robust architecture, substantial adsorption sites and rapid charge/ion transport. The Bio-CoSe2 /rGO electrode yields the maximum salt adsorption capacity and salt adsorption rate of 56.3 mg g-1 and 5.6 mg g-1 min-1 respectively, and 92.5% capacity retention after 60 cycles. These results overmatch the pristine CoSe2 and irregular granular CoSe2 /rGO synthesized by a hydrothermal method, proving the structural superiority of the Bio-CoSe2 /rGO composites. Furthermore, the in-depth adsorption kinetics study indicates the chemisorption nature of sodium ion adsorption. The structures of the Bio-CoSe2 /rGO composites after long term EDI cycles are intensively studied to unveil the mechanism behind such superior EDI performances. This study offers one effective method for constructing advanced EDI electrodes, and enriches the application of the biomimetic mineralization synthetic strategy.

16.
Small ; : e2311946, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446102

RESUMO

The convergence of water electrolysis and alkaline fuel cells offers captivating solutions for sustainably harvesting energy. The research explores both hydrazine-assisted seawater electrolysis (hydrazine oxidation reaction (HzOR) and hydrogen production reaction (HER)), as well as alkaline hydrazine fuel cell reactions (HzOR and Oxygen reduction reaction (ORR)) by using a bifunctional cobalt polyaniline derived (Co PANI/C) catalyst. The catalyst shows excellent performance for hydrazine-assisted seawater electrolysis in harsh seawater environments to produce H2 as fuel with nearly 85% Faradaic efficiency and during alkaline HzOR, the bifunctional catalyst generates H2 with 95% Faradaic efficiency by acting as both anode and cathode side catalyst. Also, the same catalyst requires only a potential of 0.34 V versus RHE and 0.906 V versus RHE for HzOR and ORR, respectively, in 1 m KOH, which makes this overall process useful for a Hz/O2 fuel cell.

17.
Small ; : e2402058, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607256

RESUMO

Chiral organic additives have unveiled the extraordinary capacity to form chiral inorganic superstructures, however, complex hierarchical structures have hindered the understanding of chiral transfer and growth mechanisms. This study introduces a simple hydrothermal synthesis method for constructing chiral cobalt superstructures with cysteine, demonstrating specific recognition of chiral molecules and outstanding electrocatalytic activity. The mild preparation conditions allow in situ tracking of chirality evolution in the chiral cobalt superstructure, offering unprecedented insights into the chiral transfer and amplification mechanism. The resulting superstructures exhibit a universal formation process applicable to other metal oxides, extending the understanding of chiral superstructure evolution. This work contributes not only to the fundamental understanding of chirality in self-assembled structures but also provides a versatile method for designing chiral inorganic nanomaterials with remarkable molecular recognition and electrocatalytic capabilities.

18.
Small ; : e2400855, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563589

RESUMO

The transition metal oxides/sulfides are considered promising catalysts due to their abundant resources, facile synthesis, and reasonable electrocatalytic activity. Herein, a significantly improved intrinsic catalytic activity is achieved for constructing a Co-based nanocrystal (Co-S@NC) with the coordination of Co─S, Co─S─C, and Co─Nx─C. The calculational and experimental results demonstrate that the diversified chemical environment of Co-cations induces the transition of 3d orbitals to a high spin-state that exhibits the coexistence of Co2+ with fully occupied dπ orbitals and Co3+ with unpaired electrons in dπ orbitals. The diverse dπ orbitals occupation contributes to an elevated d-band center of Co ions, which accelerates oxygen reduction reaction and oxygen evolution reaction electrocatalytic kinetics of the Co-S@NC nanocrystal. Therefore, the Li-O2 batteries with Co-S@NC as cathode catalyst exhibit 300 cycles at the current density of 500 mA g-1 with a cut-off capacity of 1000 mAh g-1. Moreover, the ultrahigh discharge specific capacity of 34 587 mAh g-1 is obtained at a current density of 1000 mA g-1, corresponding to the energy density 949 Wh kg-1 of a prototype Li-O2 battery. The study on 3d orbital regulation of nanocrystals provides an innovative strategy for bifunctional electrocatalysts toward the practical application of metal-air batteries.

19.
Small ; 20(1): e2304683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649200

RESUMO

The addition of Pt generally promotes the reduction of Co3 O4 in supported catalysts, which further improves their activity and selectivity. However, due to the limited spatial resolution, how Pt and its location and distribution affect the reduction of Co3 O4 remains unclear. Using ex situ and in situ ambient pressure scanning transmission electron microscopy, combined with temperature-programmed reduction, the reduction of silica-supported Co3 O4 without Pt and with different location and distribution of Pt is studied. Shrinkage of Co3 O4 nanoparticles is directly observed during their reduction, and Pt greatly lowers the reduction temperature. For the first time, the initial reduction of Co3 O4 with and without Pt is studied at the nanoscale. The initial reduction of Co3 O4 changes from surface to interface between Co3 O4 and SiO2 . Small Pt nanoparticles located at the interface between Co3 O4 and SiO2 promote the reduction of Co3 O4 by the detachment of Co3 O4 /CoO from SiO2 . After reduction, the Pt and part of the Co form an alloy with Pt well dispersed. This study for the first time unravels the effects of Pt location and distribution on the reduction of Co3 O4 nanoparticles, and helps to design cobalt-based catalysts with efficient use of Pt as a reduction promoter.

20.
Small ; 20(3): e2304981, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37672807

RESUMO

Sodium-potassium (NaK) alloy electrodes are ideal for next-generation dendrite-free alkali metal electrodes due to their dendrite-free nature. However, issues such as slow diffusion kinetics due to the large K+ radius and the loss of active potassium during the reaction severely limit its application. Here a novel cobalt/nitrogen-doped carbon material is designed and it is applied to the construction of a NaK alloy electrode. The experimental and theoretical results indicate that the confining effect of the nitrogen-doped graphitic carbon layer can protect the cobalt nanoparticles from corrosion leaching, while the presence of Co─Nx bonds and cobalt nanoparticles provides more active sites for the reaction, realizing the synergistic effect of adsorption-catalytic modulation, lowering the K+ diffusion energy barrier and promoting charge transfer and ion diffusion. The application of this electrode to a symmetrical battery can achieve more than 1800 stable cycles under a current density of 0.4 mA cm-2 and a charge/discharge specific capacity of 122.64 mAh g-1 under a current of 0.5C in a full battery. This finding provides a new idea to realize a fast, stable, and efficient application of NaK alloy electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA