Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Pharm ; 21(6): 3006-3016, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698500

RESUMO

Unlocking the potential of metal nanoparticles (NPs) in biomedical applications represents a leading endeavor in contemporary research. Among these, gold NPs (AuNPs) and silver NPs (AgNPs) have shown promising strides in combatting complex neurodegenerative ailments like Alzheimer's disease. Yet, the unexplored realm of bimetallic Au/Ag-NP harbors immense potential, concealing undiscovered opportunities for enhanced therapeutic effectiveness through the synergistic interaction of metal ions. Nonetheless, the limitations of traditional synthesis methods have restricted the preparation, biocompatibility, and versatility of these NPs, prompting an urgent requirement for innovative approaches. Biobased synthetic methodologies have emerged as a noteworthy solution to address these challenges. Our study ventures into uncharted terrain, harnessing collagen-mimicking peptide nanofibers as a bioactive template for the synthesis of bimetallic NPs. These green NPs exhibit remarkable activity in inhibiting amyloid ß (Aß) protein aggregation with almost 74% inhibition, surpassing the individual impacts of Au and Ag NPs, which show inhibition percentages of 66 and 43, respectively. The bimetallic Au/Ag-NPs not only demonstrate powerful inhibition of Aß, but they also demonstrate inhibitory activity against esterase (∼50%) and against reactive oxygen species (ROS) (∼75%), metamorphosing into multifaceted therapeutic agents for Alzheimer's disease. Au/Ag-NPs have proven highly beneficial in surpassing cellular barriers, as evidenced by studies on tissue penetration, 3D uptake, and endosomal escape, and these attributes also hold promise for the future treatment modalities. The findings indicate that the intrinsic traits of Au/Ag-NPs provide numerous mechanistic benefits, such as inhibiting Aß and acetylcholinesterase (AChE), and reducing stress related to ROS, in addition to their advantageous internalization properties. This research represents a notable advancement in the development of multitargeted treatments for neurodegenerative disorders using bimetallic NPs, diverging from the prevalent emphasis on AuNPs in the current literature.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ouro , Nanopartículas Metálicas , Prata , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Nanopartículas Metálicas/química , Ouro/química , Prata/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo
2.
J Pept Sci ; 30(1): e3531, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056886

RESUMO

The current wound-healing collagen mimetic peptides (CMPs) have limitations such as poor membrane permeability and protease susceptibility. Herein, the solid-phase peptide synthesis of CMPs containing the integrin binding motif GFOGER is reported. The peptide sequences also consist of lipophilic moieties (adamantane and palmitic acid) for improved membrane permeability and different collagen-inducing tripeptides, namely, Thr-Thr-Lys (TTK), Gly-His-Lys (GHK), Gln-Pro-Arg (QPR), and Glu-Glu-Met (EEM). The synthesized peptides were successfully characterized and purified using liquid chromatography-mass spectrometry and preparative high-performance liquid chromatography techniques, respectively. The palmitic acid moiety increased the hydrophobic nature of the peptides, and they were retained longer on the stationary material of the reverse phase C-18 column. The three-dimensional parallel-strand helical structure of peptide DGD-GG-GFOGER-GG-TTK-palmitate was obtained using nuclear magnetic resonance spectroscopy and circular dichroism. The synthesized peptides have the desired helical structure, which can promote integrin binding.


Assuntos
Colágeno Tipo I , Ácido Palmítico , Sequência de Aminoácidos , Peptídeos/química , Colágeno , Integrinas
3.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069354

RESUMO

The structural and biomechanical properties of collagen-rich ocular tissues, such as the sclera, are integral to ocular function. The degradation of collagen in such tissues is associated with debilitating ophthalmic diseases such as glaucoma and myopia, which often lead to visual impairment. Collagen mimetic peptides (CMPs) have emerged as an effective treatment to repair damaged collagen in tissues of the optic projection, such as the retina and optic nerve. In this study, we used atomic force microscopy (AFM) to assess the potential of CMPs in restoring tissue stiffness in the optic nerve head (ONH), including the peripapillary sclera (PPS) and the glial lamina. Using rat ONH tissue sections, we induced collagen damage with MMP-1, followed by treatment with CMP-3 or vehicle. MMP-1 significantly reduced the Young's modulus of both the PPS and the glial lamina, indicating tissue softening. Subsequent CMP-3 treatment partially restored tissue stiffness in both the PPS and the glial lamina. Immunohistochemical analyses revealed reduced collagen fragmentation after MMP-1 digestion in CMP-3-treated tissues compared to vehicle controls. In summary, these results demonstrate the potential of CMPs to restore collagen stiffness and structure in ONH tissues following enzymatic damage. CMPs may offer a promising therapeutic avenue for preserving vision in ocular disorders involving collagen remodeling and degradation.


Assuntos
Disco Óptico , Animais , Disco Óptico/metabolismo , Esclera/metabolismo , Roedores/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Colágeno/metabolismo , Pressão Intraocular , Fenômenos Biomecânicos
4.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328332

RESUMO

Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Axônios/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Glaucoma/metabolismo , Pressão Intraocular , Peptídeos/metabolismo , Células Ganglionares da Retina/metabolismo
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806007

RESUMO

Epithelial cells of multiple types produce and interact with the extracellular matrix to maintain structural integrity and promote healthy function within diverse endogenous tissues. Collagen is a critical component of the matrix, and challenges to collagen's stability in aging, disease, and injury influence survival of adherent epithelial cells. The retinal pigment epithelium (RPE) is important for maintaining proper function of the light-sensitive photoreceptors in the neural retina, in part through synergy with the collagen-rich Bruch's membrane that promotes RPE adherence. Degradation of Bruch's is associated with RPE degeneration, which is implicated early in age-related macular degeneration, a leading cause of irreversible vision loss worldwide. Collagen mimetic peptides (CMPs) effectively repair damage to collagen helices, which are present in all collagens. Our previous work indicates that in doing so, CMPs promote survival and integrity of affected cells and tissues in models of ocular injury and disease, including wounding of corneal epithelial cells. Here, we show that CMPs increase adherence and migration of the ARPE-19 line of human RPE cells challenged by digestion of their collagen substrate. Application of CMPs also reduced both ARPE-19 secretion of pro-inflammatory cytokines (interleukins 6 and 8) and production of reactive oxygen species. Taken together, these results suggest that repairing collagen damaged by aging or other pathogenic processes in the posterior eye could improve RPE adherence and survival and, in doing so, reduce the inflammatory and oxidative stress that perpetuates the cycle of destruction at the root of age-related diseases of the outer retina.


Assuntos
Lâmina Basilar da Corioide , Epitélio Pigmentado da Retina , Colágeno/metabolismo , Colágeno/farmacologia , Humanos , Estresse Oxidativo , Peptídeos/metabolismo , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/metabolismo
6.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926094

RESUMO

Self-assembly of artificial peptides has been widely studied for constructing nanostructured materials, with numerous potential applications in the nanobiotechnology field. Herein, we report the synthesis and hierarchical self-assembly of collagen-mimetic peptides (CMPs) bearing various aromatic groups at the N-termini, including 2-naphthyl, 1-naphtyl, anthracenyl, and pyrenyl groups, into nanofibers. The CMPs (R-(GPO)n: n > 4) formed a triple helix structure in water at 4 °C, as confirmed via CD analyses, and their conformations were more stable with increasing hydrophobicity of the terminal aromatic group and peptide chain length. The resulting pre-organized triple helical CMPs showed diverse self-assembly into highly ordered nanofibers, reflecting their slight differences in hydrophobic/hydrophilic balance and configuration of aromatic templates. TEM analysis demonstrated that 2Np-CMPn (n = 6 and 7) and Py-CMP6 provided well-developed natural collagen-like nanofibers and An-CMPn (n = 5-7) self-assembled into rod-like micelle fibers. On the other hand, 2Np-CMP5 and 1Np-CMP6 were unable to form nanofibers under the same conditions. Furthermore, the Py-CMP6 nanofiber was found to encapsulate a guest hydrophobic molecule, Nile red, and exhibited unique emission behavior based on the specific nanostructure. In addition to the ability of CMPs to bind small molecules, their controlled self-assembly enables their versatile utilization in drug delivery and wavelength-conversion nanomaterials.


Assuntos
Biomimética/métodos , Colágeno/química , Nanofibras/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Nanoestruturas/química , Peptídeos/síntese química
7.
Chembiochem ; 20(24): 3013-3019, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31237990

RESUMO

Osteogenesis imperfecta (OI) is a hereditary bone disorder with various phenotypes ranging from mild multiple fractures to perinatal lethal cases, and it mainly results from the substitution of Gly by a bulkier residue in type I collagen. Triple-helical peptide models of Gly mutations have been widely utilized to decipher the etiology of OI, although these studies are mainly limited to characterizing the peptide features, such as stability and conformation in the solution state. Herein, we have constructed a new series of triple-helical peptides DD(GPO)5 ZPO(GPO)4 DD (Z=Ala, Arg, Asp, Cys, Glu, Ser, and Val) mimicking the most common types of observed OI cases. The inclusion of special terminal aspartic acids enables these collagen mimetic peptides to self-assemble to form nanomaterials upon the trigger of lanthanide ions. We have for the first time systematically evaluated the effect of different OI mutations on the aggregated state of collagen mimetic peptides. We have revealed that the identity of the Gly-substituting residue plays a determinant role in the morphology and secondary structure of the collagen peptide assemblies, showing that bulkier residues tend to result in a disruptive secondary structure and defective morphology, which lead to more severe OI phenotypes. These findings of osteogenesis imperfecta collagen mimetic peptides in the aggregation state provide novel perspectives on the molecular mechanism of osteogenesis imperfecta, and may aid the development of new therapeutic strategies.


Assuntos
Colágeno/metabolismo , Glicina , Osteogênese Imperfeita/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Temperatura
8.
Mol Pharm ; 16(2): 846-855, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592426

RESUMO

Collagen mimetic scaffolds play a pivotal role in regenerative medicine and tissue engineering due to their extraordinary structural and biological features. We have herein, for the first time, reported the construction of luminescent lanthanide-collagen peptide hybrid three-dimensional nanofibrous scaffolds, which well mimic the characteristic architectural structure of native collagen. Three collagen mimetic peptides, composed of repetitive central (GPO)7 sequences and altered terminal amino acids, have been shown to consistently self-assemble to form biocompatible nanofibers under the trigger of a variety of lanthanide ions, which also functionalize the assembled materials with easily tunable photoluminescence. Furthermore, the collagen peptide-lanthanide hybrid scaffolds possess programmable pH-responsive features. The lanthanide ion-mediated assembly of all three collagen peptides are conveniently and reversibly regulated by pH, while their pH-dependent patterns are finely tuned by the identity of terminal amino acids. Using camptothecin and cefoperazone sodium as two model drugs, the drug-loading and releasing efficiency of the collagen peptide-lanthanide scaffolds are nicely modulated by pH, demonstrating the efficacy of these nanofibrous scaffolds as pH-responsive drug carriers. These novel luminescent collagen peptide-lanthanide scaffolds provide a facile system for pH-controlled drug delivery, suggesting promising applications in the development of therapies for many diseases.


Assuntos
Colágeno/química , Peptídeos/química , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Angew Chem Int Ed Engl ; 53(32): 8367-71, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24961508

RESUMO

A collagen-mimetic peptide, NSIII, has been designed with three sequential blocks having positive, neutral, and negative charges, respectively. The non-canonical imino acid, (2S,4S)-4-aminoproline (amp), was used to specify the positive charges at the Xaa positions of (Xaa-Yaa-Gly) triads in the N-terminal domain of NSIII. Peptide NSIII underwent self-assembly from aqueous solution to form a highly homogeneous population of nanosheets. Two-dimensional crystalline sheets formed in which the length of the peptide defined the height of the sheets. These results contrasted with prior results on a similar multi-domain collagen-mimetic polypeptides in which the sheets had highly polydisperse distribution of sizes in the (x/y)- and (z)-dimensions. The structural differences between the two nanosheet assemblies were interpreted in terms of the relative stereoelectronic effects of the different aminoproline derivatives on the local triple helical conformation of the peptides.


Assuntos
Colágeno/química , Peptídeos/química , Modelos Moleculares , Conformação Molecular
10.
Int J Biol Macromol ; 272(Pt 1): 132446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795898

RESUMO

Type IV collagen, a principal constituent of basement membranes, consists of six distinct α chains that assemble into both ABC and AAB-type heterotrimers. While collagen-like peptides have been investigated for heterotrimer formation, the construction of ABC-type heterotrimeric collagen mimetic peptides remains a formidable challenge, primarily due to the intricate composition and arrangement of the chains. We have herein for the first time reported the development of a versatile triblock peptide system to mimic ABC-type heterotrimeric collagen stabilized by salt bridges. The triblock peptides A, B, and C incorporate functional natural type IV collagen sequences in the center, along with charged amino acids at their N and C-terminals. By leveraging electrostatic repulsion at these charged termini, the formation of homotrimers is effectively inhibited, while stable ABC-type heterotrimers are generated through the establishment of salt bridges between oppositely charged terminals. Circular dichroism (CD) spectroscopy demonstrated that peptides A, B, and C existed as individual monomers, while they effectively formed stable ABC-type heterotrimers upon being mixed at a molar ratio of 1:1:1. Additionally, fluorescence quenching results indicated that fluorescence-labeled peptides A', B', and C' formed ABC-type heterotrimer, exhibiting comparable thermal stability as determined by CD spectroscopy. Molecular dynamics simulations elucidated the role of salt bridges between arginine and aspartic acid residues at N- and C-terminals in maintaining a unique chain register in the ABC-type heterotrimers. These triblock peptides offer a robust approach for replicating the structural and functional characteristics of type IV collagen, with promising applications in elucidating the biological roles and pathologies associated with heterotrimeric collagen.


Assuntos
Peptídeos , Peptídeos/química , Multimerização Proteica , Colágeno Tipo IV/química , Sais/química , Sequência de Aminoácidos , Estabilidade Proteica , Colágeno/química , Dicroísmo Circular , Simulação de Dinâmica Molecular
11.
Front Neurosci ; 17: 1148950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260844

RESUMO

The intraepithelial sub-basal nerve plexus of the cornea is characterized by a central swirl of nerve processes that terminate between the apical cells of the epithelium. This plexus is a critical component of maintaining homeostatic function of the ocular surface. The cornea contains a high concentration of collagen, which is susceptible to damage in conditions such as neuropathic pain, neurotrophic keratitis, and dry eye disease. Here we tested whether topical application of a collagen mimetic peptide (CMP) is efficacious in repairing the corneal sub-basal nerve plexus in a mouse model of ocular surface desiccation. We induced corneal tear film reduction, epithelial damage, and nerve bed degradation through a combination of environmental and pharmaceutical (atropine) desiccation. Mice were subjected to desiccating air flow and bilateral topical application of 1% atropine solution (4× daily) for 2 weeks. During the latter half of this exposure, mice received topical vehicle [phosphate buffered saline (PBS)] or CMP [200 µm (Pro-Pro-Gly)7, 10 µl] once daily, 2 h prior to the first atropine treatment for that day. After euthanasia, cornea were labeled with antibodies against ßIII tubulin to visualize and quantify changes to the nerve bed. For mice receiving vehicle only, the two-week desiccation regimen reduced neuronal coverage of the central sub-basal plexus and epithelial terminals compared to naïve, with some corneas demonstrating complete degeneration of nerve beds. Accordingly, both sub-basal and epithelial ßIII tubulin-labeled processes demonstrated increased fragmentation, indicative of nerve disassembly. Treatment with CMP significantly reduced nerve fragmentation, expanded both sub-basal and epithelial neuronal coverage compared to vehicle controls, and improved corneal epithelium integrity, tear film production, and corneal sensitivity. Together, these results indicate that topical CMP significantly counters neurodegeneration characteristic of corneal surface desiccation. Repairing underlying collagen in conditions that damage the ocular surface could represent a novel therapeutic avenue in treating a broad spectrum of diseases or injury.

12.
Adv Healthc Mater ; 11(7): e2101592, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783464

RESUMO

A collagen-rich tumor microenvironment (TME) is associated with worse outcomes in cancer patients and contributes to drug resistance in many cancer types. In melanoma, stiff and fibrillar collagen-abundant tissue is observed after failure of therapeutic treatments with BRAF inhibitors. Increased collagen in the TME can affect properties of the extracellular matrix (ECM), including stiffness, adhesiveness, and interaction of integrins with triple helix forming nanostructures. Decoupling these biochemical and biophysical properties of the ECM can lead to a better understanding of how each of these individual properties affect melanoma cancer behavior and drug efficacy. In addition, as drug treatment can induce cancer cell phenotypic switch, cancer cell responsiveness to the TME can be dynamically changed during therapeutic treatments. To investigate cancer cell phenotype changes and the role of the cancer TME, poly(ethylene glycol) (PEG) hydrogels functionalized with collagen mimetic peptides (CMPs) is utilized, or an interpenetrating network (IPN) of type І collagen within the PEG system to culture various melanoma cell lines in the presence or absence of Vemurafenib (PLX4032) drug treatment is prepared. Additionally, the potential of using CMP functionalized PEG hydrogels, which can provide better tunability is explored, to replace the existing invadopodia assay platform based on fluorescent gelatin.


Assuntos
Melanoma , Podossomos , Colágeno/química , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Podossomos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microambiente Tumoral
13.
Macromol Biosci ; 21(7): e2100070, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34008293

RESUMO

Collagen mimetic peptides (CMPs), which imitate various structural or functional features of natural collagen, constitute advanced models illuminating the folding aspects of the collagen triple helix (CTH) motif. In this study, the CMPs of repeating Gly-Pro-Pro (GPP) triplets are tethered to an organic scaffold based on a tris(2-aminoethyl) amine (TREN) derivative (TREN(sucOH)3 ). These three templated peptide strands are further expanded via native chemical ligation to increase the number of GPP triplets and lead to a TREN(sucGPPGPPG(Ψ)SPGPPCPP[GPP]4 )3 construct. The incorporation of an ester switch segment, G(Ψ)S, as a positional O-acyl isopeptide (DEPSI) defect into the peptide strands allows the pH-controlled acceleration of CTH formation. The strand assembly process is monitored by circular dichroism (CD) spectroscopy. The results of pH jump experiments and thermal denaturation studies provide new insights into the contributions of structural DEPSI defects to the template-guided self-assembly of the CTH motif. While the organic scaffold drives the CTH formation, the switch defects act as temporary opponents and slow down the folding. CD spectroscopy data confirm that the switch defects contribute to the formation of a more stable CTH motif by enhancing the structural dynamics at the early stage of the folding process.


Assuntos
Colágeno , Peptídeos , Biomimética , Dicroísmo Circular , Colágeno/química , Peptídeos/química
14.
Front Pharmacol ; 12: 764709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795592

RESUMO

Optic neuropathies are a major cause of visual disabilities worldwide, causing irreversible vision loss through the degeneration of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Chief among these is glaucoma, in which sensitivity to intraocular pressure (IOP) leads to RGC axon dysfunction followed by outright degeneration of the optic projection. Current treatments focus entirely on lowering IOP through topical hypotensive drugs, surgery to facilitate aqueous fluid outflow, or both. Despite this investment in time and resources, many patients continue to lose vision, underscoring the need for new therapeutics that target neurodegeneration directly. One element of progression in glaucoma involves matrix metalloproteinase (MMP) remodeling of the collagen-rich extracellular milieu of RGC axons as they exit the retina through the optic nerve head. Thus, we investigated the ability of collagen mimetic peptides (CMPs) representing various single strand fractions of triple helix human type I collagen to protect RGC axons in an inducible model of glaucoma. First, using dorsal root ganglia maintained in vitro on human type I collagen, we found that multiple CMPs significantly promote neurite outgrowth (+35%) compared to vehicle following MMP-induced fragmentation of the α1(I) and α2(I) chains. We then applied CMP to adult mouse eyes in vivo following microbead occlusion to elevate IOP and determined its influence on anterograde axon transport to the superior colliculus, the primary RGC projection target in rodents. In glaucoma models, sensitivity to IOP causes early degradation in axon function, including anterograde transport from retina to central brain targets. We found that CMP treatment rescued anterograde transport following a 3-week +50% elevation in IOP. These results suggest that CMPs generally may represent a novel therapeutic to supplement existing treatments or as a neuroprotective option for patients who do not respond to IOP-lowering regimens.

15.
Bioengineering (Basel) ; 8(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466358

RESUMO

Since their first synthesis in the late 1960s, collagen mimetic peptides (CMPs) have been used as a molecular tool to study collagen, and as an approach to develop novel collagen mimetic biomaterials. Collagen, a major extracellular matrix (ECM) protein, plays vital roles in many physiological and pathogenic processes. Applications of CMPs have advanced our understanding of the structure and molecular properties of a collagen triple helix-the building block of collagen-and the interactions of collagen with important molecular ligands. The accumulating knowledge is also paving the way for developing novel CMPs for biomedical applications. Indeed, for the past 50 years, CMP research has been a fast-growing, far-reaching interdisciplinary field. The major development and achievement of CMPs were documented in a few detailed reviews around 2010. Here, we provided a brief overview of what we have learned about CMPs-their potential and their limitations. We focused on more recent developments in producing heterotrimeric CMPs, and CMPs that can form collagen-like higher order molecular assemblies. We also expanded the traditional view of CMPs to include larger designed peptides produced using recombinant systems. Studies using recombinant peptides have provided new insights on collagens and promoted progress in the development of collagen mimetic fibrillar self-assemblies.

16.
ACS Biomater Sci Eng ; 7(9): 4175-4195, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34283566

RESUMO

Peptides are of continued interest for therapeutic applications, from soluble and immobilized ligands that promote desired binding or uptake to self-assembled supramolecular structures that serve as scaffolds in vitro and in vivo. These applications require efficient and scalable synthetic approaches because of the large amounts of material that often are needed for studies of bulk material properties and their translation. In this work, we establish new methods for the synthesis, purification, and visualization of assembling peptides, with a focus on multifunctional collagen mimetic peptides (mfCMPs) relevant for formation and integration within hydrogel-based biomaterials. First, a methodical approach useful for the microwave-assisted synthesis of assembling peptide sequences prone to deletions was established, beginning with the identification of the deleted residues and their locations and followed by targeted use of dual chemistry couplings for those specific residues. Second, purification techniques that integrate the principles of heating and ion displacement with traditional chromatography and dialysis were implemented to improve separation and isolation of the desired multifunctional peptide product, which contained blocks for thermoresponsiveness and ionic interactions. Third, an approach for fluorescent labeling of these mfCMPs, which is orthogonal to their assembly and their covalent incorporation into a bulk hydrogel material, was established, allowing visualization of the resulting hierarchical fibrillar structures in three dimensions within hydrogels using confocal microscopy. The methods presented in this work allow the production of multifunctional peptides in scalable quantities and with minimal deletions, enabling future studies for better understanding of composition-structure-property relationships and for translating these biomaterials into a range of applications. Although mfCMPs are the focus of this work, the methods demonstrated could prove useful for other assembling peptide systems and for the production of peptides more broadly for therapeutic applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Colágeno , Peptídeos , Diálise Renal
17.
Front Pharmacol ; 12: 705623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483909

RESUMO

The cornea of the eye is at risk for injury through constant exposure to the extraocular environment. A highly collagenous structure, the cornea contains several different types distributed across multiple layers. The anterior-most layer contains non-keratinized epithelial cells that serve as a barrier to environmental, microbial, and other insults. Renewal and migration of basal epithelial cells from the limbus involve critical interactions between secreted basement membranes, composed primarily of type IV collagen, and underlying Bowman's and stromal layers, which contain primarily type I collagen. This process is challenged in many diseases and conditions that insult the ocular surface and damage underlying collagen. We investigated the capacity of a collagen mimetic peptide (CMP), representing a fraction of a single strand of the damaged triple helix human type I collagen, to promote epithelial healing following an acute corneal wound. In vitro, the collagen mimetic peptide promoted the realignment of collagen damaged by enzymic digestion. In an in vivo mouse model, topical application of a CMP-containing formulation following a 360° lamellar keratectomy targeting the corneal epithelial layer accelerated wound closure during a 24 h period, compared to vehicle. We found that the CMP increased adherence of the basal epithelium to the underlying substrate and enhanced density of epithelial cells, while reducing variability in the regenerating layer. These results suggest that CMPs may represent a novel therapeutic to heal corneal tissue by repairing underlying collagen in conditions that damage the ocular surface.

18.
Regen Biomater ; 7(5): 471-482, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33149936

RESUMO

Porous biomaterials which provide a structural and biological support for cells have immense potential in tissue engineering and cell-based therapies for tissue repair. Collagen biomaterials that can host endothelial cells represent promising tools for the vascularization of engineered tissues. Three-dimensional collagen scaffolds possessing controlled architecture and mechanical stiffness are obtained through freeze-drying of collagen suspensions, followed by chemical cross-linking which maintains their stability. However, cross-linking scaffolds renders their biological activity suboptimal for many cell types, including human umbilical vein endothelial cells (HUVECs), by inhibiting cell-collagen interactions. Here, we have improved crucial HUVEC interactions with such cross-linked collagen biomaterials by covalently coupling combinations of triple-helical peptides (THPs). These are ligands for collagen-binding cell-surface receptors (integrins or discoidin domain receptors) or secreted proteins (SPARC and von Willebrand factor). THPs enhanced HUVEC adhesion, spreading and proliferation on 2D collagen films. THPs grafted to 3D-cross-linked collagen scaffolds promoted cell survival over seven days. This study demonstrates that THP-functionalized collagen scaffolds are promising candidates for hosting endothelial cells with potential for the production of vascularized engineered tissues in regenerative medicine applications.

19.
ACS Infect Dis ; 6(7): 1836-1843, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32413256

RESUMO

Group A Streptococcus (GAS) displays cell-surface proteins that resemble human collagen. We find that a fluorophore-labeled collagen mimetic peptide (CMP) labels GAS cells but not Escherichia coli or Bacillus subtilis cells, which lack such proteins. The CMP likely engages in a heterotrimeric helix with endogenous collagen, as the nonnatural d enantiomer of the CMP does not label GAS cells. To identify a molecular target, we used reverse genetics to "knock-in" the GAS genes that encode two proteins with collagen-like domains, Scl1 and Scl2, into B. subtilis. The fluorescent CMP labels the cells of these B. subtilis strains. Moreover, these strains bind tightly to a surface of mammalian collagen. These data are consistent with streptococcal collagen forming triple helices with damaged collagen in a wound bed and thus have implications for microbial virulence.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Animais , Proteínas de Bactérias/genética , Colágeno , Escherichia coli , Humanos , Streptococcus pyogenes/genética
20.
Tissue Eng Part C Methods ; 26(10): 506-518, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32988293

RESUMO

Tendon injuries are difficult to heal, in part, because intrinsic tendon healing, which is dominated by scar tissue formation, does not effectively regenerate the native structure and function of healthy tendon. Further, many current treatment strategies also fall short of producing regenerated tendon with the native properties of healthy tendon. There is increasing interest in the use of cell-instructive strategies to limit the intrinsic fibrotic response following injury and improve the regenerative capacity of tendon in vivo. We have established multifunctional, cell-instructive hydrogels for treating injured tendon that afford tunable control over the biomechanical, biochemical, and structural properties of the cell microenvironment. Specifically, we incorporated integrin-binding domains (RGDS) and assembled multifunctional collagen mimetic peptides that enable cell adhesion and elongation of stem cells within synthetic hydrogels of designed biomechanical properties and evaluated these materials using targeted success criteria developed for testing in mechanically demanding environments such as tendon healing. The in vitro and in situ success criteria were determined based on systematic reviews of the most commonly reported outcome measures of hydrogels for tendon repair and established standards for testing of biomaterials. We then showed, using validation experiments, that multifunctional and synthetic hydrogels meet these criteria. Specifically, these hydrogels have mechanical properties comparable to developing tendon; are noncytotoxic both in two-dimensional bolus exposure (hydrogel components) and three-dimensional encapsulation (full hydrogel); are formed, retained, and visualized within tendon defects over time (2-weeks); and provide mechanical support to tendon defects at the time of in situ gel crosslinking. Ultimately, the in vitro and in situ success criteria evaluated in this study were designed for preclinical research to rigorously test the potential to achieve successful tendon repair before in vivo testing and indicate the promise of multifunctional and synthetic hydrogels for continued translation. Impact statement Tendon healing results in a weak scar that forms due to poor cell-mediated repair of the injured tissue. Treatments that tailor the instructions experienced by cells during healing afford opportunities to regenerate the healthy tendon. Engineered cell-instructive cues, including the biomechanical, biochemical, and structural properties of the cell microenvironment, within multifunctional synthetic hydrogels are promising therapeutic strategies for tissue regeneration. In this article, the preclinical efficacy of multifunctional synthetic hydrogels for tendon repair is tested against rigorous in vitro and in situ success criteria. This study indicates the promise for continued preclinical translation of synthetic hydrogels for tissue regeneration.


Assuntos
Hidrogéis/farmacologia , Teste de Materiais , Regeneração/efeitos dos fármacos , Tendões/fisiologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Polimerização , Ratos Long-Evans , Traumatismos dos Tendões/fisiopatologia , Tendões/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA