Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.281
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2304318120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523534

RESUMO

The large-scale implementation of renewable energy systems necessitates the development of energy storage solutions to effectively manage imbalances between energy supply and demand. Herein, we investigate such a scalable material solution for energy storage in supercapacitors constructed from readily available material precursors that can be locally sourced from virtually anywhere on the planet, namely cement, water, and carbon black. We characterize our carbon-cement electrodes by combining correlative EDS-Raman spectroscopy with capacitance measurements derived from cyclic voltammetry and galvanostatic charge-discharge experiments using integer and fractional derivatives to correct for rate and current intensity effects. Texture analysis reveals that the hydration reactions of cement in the presence of carbon generate a fractal-like electron-conducting carbon network that permeates the load-bearing cement-based matrix. The energy storage capacity of this space-filling carbon black network of the high specific surface area accessible to charge storage is shown to be an intensive quantity, whereas the high-rate capability of the carbon-cement electrodes exhibits self-similarity due to the hydration porosity available for charge transport. This intensive and self-similar nature of energy storage and rate capability represents an opportunity for mass scaling from electrode to structural scales. The availability, versatility, and scalability of these carbon-cement supercapacitors opens a horizon for the design of multifunctional structures that leverage high energy storage capacity, high-rate charge/discharge capabilities, and structural strength for sustainable residential and industrial applications ranging from energy autarkic shelters and self-charging roads for electric vehicles, to intermittent energy storage for wind turbines and tidal power stations.

2.
Proc Natl Acad Sci U S A ; 120(28): e2302234120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399391

RESUMO

The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites. The proposed dual-structure comprises a primary structure, namely, a TiB whisker-rich region engendered fine grain Ti6Al4V matrix with a three-dimensional micropellet architecture (3D-MPA), and an overall structure consisting of evenly distributed 3D-MPA "reinforcements" and a TiBw-lean titanium matrix. The dual structure presents a spatially heterogeneous grain distribution with 5.8 µm fine grains and 42.3 µm coarse grains, which exhibits excellent hetero-deformation-induced (HDI) hardening and achieves a 5.8% ductility. Interestingly, the 3D-MPA "reinforcements" show 11.1% isotropic deformability and 66% dislocation storage, which endows the TMCs with good strength and loss-free ductility. Our enlightening method uses an interdiffusion and self-organization strategy based on powder metallurgy to enable metal matrix composites with the heterostructure of the matrix and the configuration of reinforcement to address the strength-ductility trade-off dilemma.

3.
Proc Natl Acad Sci U S A ; 119(28): e2123497119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787051

RESUMO

Spatial variations in fiber alignment (and, therefore, in mechanical anisotropy) play a central role in the excellent toughness and fatigue characteristics of many biological materials. In this work, we examine the effect of fiber alignment in soft composites, including both "in-plane" and "out-of-plane" fiber arrangements. We take inspiration from the spatial variations of fiber alignment found in the aorta to three-dimensionally (3D) print soft, tough silicone composites with an excellent combination of stiffness, toughness, and fatigue threshold, regardless of the direction of loading. These aorta-inspired composites exhibit mechanical properties comparable to skin, with excellent combinations of stiffness and toughness not previously observed in synthetic soft materials.

4.
Nano Lett ; 24(23): 6965-6973, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814470

RESUMO

Understanding and controlling the wear process of heterogeneous interfaces between soft and hard phases is crucial for designing and fabricating materials, such as improving the wear resistance of particle reinforced metal matrix composites and the accuracy and efficiency of chemical mechanical polishing. However, the wear process can be hardly observed, as interfaces are buried under the surface. Here, we proposed a nanowear test method by combining focused ion beam cutting to expose interfaces, atomic force microscopy to rub against interfaces, and scanning electron microscope to characterize the interface damage. Using this method, three typical wear forms had been observed in Al/SiC composite, i.e., merely matrix wear, particle fracture, and particle pullout. A theoretical model was proposed that revealed that the increasing interfacial friction would induce particle fracture or pullout, depending on the particle edge angle and tip edge angle. This work sheds light on wear control in composites and nanofabrication.

5.
Nano Lett ; 24(3): 905-913, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197790

RESUMO

Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.

6.
Plant J ; 116(2): 329-346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675599

RESUMO

Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.

7.
Small ; 20(4): e2304527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715071

RESUMO

Magnetic nanoparticles (NPs) are widely employed for remote controlled molecular release applications using alternating magnetic fields (AMF). Yet, they intrinsically generate heat in the process by Néel relaxation limiting their application scope. In contrast, iron oxide NPs larger than ≈15 nm react to AMF by Brownian relaxation resulting in tumbling and shaking. Here, such iron oxide NPs are combined with polymer shells where the shaking motion mechanically agitates and partially detaches the polymer chains, covalently cleaves a fraction of the polymers, and releases the prototypical cargo molecules doxorubicin and curcumin into solution. This heat-free release mechanism broadens the potential application space of polymer-functionalized magnetic NP composites.

8.
Small ; 20(22): e2310266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098346

RESUMO

The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical Mössbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm-2 for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.

9.
Small ; 20(22): e2306946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133511

RESUMO

Modern microelectronics and emerging technologies such as wearable electronics and soft robotics require elastomers to integrate high damping with low thermal resistance to avoid damage caused by vibrations and heat accumulation. However, the strong coupling between storage modulus and loss factor makes it generally challenging to simultaneously increase both thermal conductance and damping. Here, a strategy of introducing hierarchical interaction and regulating fillers in polybutadiene/spherical aluminum elastomer composites is reported to simultaneously achieve extraordinary damping ability of tan δ > 1.0 and low thermal resistance of 0.15 cm2 K W-1, which surpasses state-of-the-art elastomers and their composites. The enhanced damping is attributed to increased energy dissipation via introducing the hierarchical hydrogen bond interactions in polybutadiene networks and the addition of spherical aluminum, which also functions as a thermally conductive filler to achieve low thermal resistance. As a proof of concept, the polybutadiene/spherical aluminum elastomer composites are used as thermal interface materials, showing effective heat dissipation for electronic devices in vibration scenarios. The combination of outstanding damping performance and extraordinary heat dissipation ability of the elastomer composites may create new opportunities for their applications in electronics.

10.
Small ; 20(10): e2304152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888807

RESUMO

The magnetic coupling of a set of SrFe12 O19 /CoFe2 O4 nanocomposites is investigated. Advanced electron microscopy evidences the structural coherence and texture at the interfaces of the nanostructures. The fraction of the lower anisotropy phase (CoFe2 O4 ) is tuned to assess the limits that define magnetically exchange-coupled interfaces by performing magnetic remanence, first-order reversal curves (FORCs), and relaxation measurements. By combining these magnetometry techniques and the structural and morphological information from X-ray diffraction, electron microscopy, and Mössbauer spectrometry, the exchange intergranular interaction is evidenced, and the critical thickness within which coupled interfaces have a uniform reversal unraveled.

11.
Small ; 20(22): e2309313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38164816

RESUMO

Mineralization capable of growing inorganic nanostructures efficiently, orderly, and spontaneously shows great potential for application in the construction of high-performance organic-inorganic composites. As a thermodynamically spontaneous solid-phase crystallization reaction involving dual organic and inorganic components, mineralization allows for the self-assembly of sophisticated and exclusive nanostructures within a polymer matrix. It results in a diversity of functions such as enhanced strength, toughness, electrical conductivity, selective permeability, and biocompatibility. While there are previous reviews discussing the progress of mineralization reactions, many of them overlook the significant benefits of interfacial regulation and functionalization that come from the incorporation of mineralized structures into polymers. Focusing on different means of assembly of mineralized nanostructures in polymer, the work analyzes their design principles and implementation strategies. Then, their different advantages and disadvantages are analyzed by combining nanostructures with organic substrates as well as involving the basis of different functionalizations. It is anticipated to provide insights and guidance for the future development of mineralized polymer composites and their application designs.

12.
Small ; 20(28): e2311526, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396215

RESUMO

Counterfeit products and data vulnerability present significant challenges in contemporary society. Hence, various methods and technologies are explored for anticounterfeiting encoding, with luminescent tracers, particularly luminescent carbon dots (CDs), emerging as a notable solution. CDs offer promising contributions to product security, environmental sustainability, and the circular economy. This critical review aims to highlight the luminescence responsiveness of CDs to physical and chemical stimuli, achieved through nanoengineering their chemical structure. The discussion will delve into the various tunable luminescence mechanisms and decay times of CDs, investigating preferential excitations such as up-conversion, delayed fluorescence, fluorescence, room temperature phosphorescence, persistent luminescence, energy and charge transfer, as well as photo-chemical interactions. These insights are crucial for advancing anticounterfeiting solutions. Following this exploration, a systematic review will focus on the research of luminescent CDs' smart encoding applications, encompassing anticounterfeiting, product tracing, quality certification, and information encryption. Finally, the review will address key challenges in implementing CDs-based technology, providing specific insights into strategies aimed at maximizing their stability and efficacy in anticounterfeiting encoding applications.

13.
Small ; : e2402783, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115100

RESUMO

The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.

14.
Small ; : e2404662, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073247

RESUMO

Polymer-based dielectric film capacitors are essential energy storage components in electronic and power systems due to their ultrahigh power density and ultra-fast charge storage/release capability. Nonetheless, their relatively low energy density does not fully meet the requirements of power electronics and pulsed power systems. Herein, a scalable composite dielectric film based on a ferroelectric polymer with edge hydroxylated boron nitride nanosheets (BNNS-OH) is fabricated via the construction of a hydrogen bonding network and stretching orientation strategy. The presence of hydroxyl groups on boron nitride aids in forming a robust hydrogen bonding network within the ferroelectric polymer, leading to a significant increase in Young's modulus and superior dielectric performance. Furthermore, the stretching process aligns the BNNS-OH and the hydrogen bonding network along the drawing direction via covalent and hydrogen bonding interaction, resulting in a remarkable tensile strength (109 MPa), breakdown strength (688 MV m-1), and energy density (28.2 J cm-3), outperforming mostrepresentative polymer-based dielectric films. In combining the advantages of a simple preparation process, extraordinary energy storage performance, and low-cost raw materials, this strategy is viable for large-scale production of polymer-based dielectric films with high mechanical and dielectric performance and opens a new path for the development of next-generation energy storage applications.

15.
Small ; 20(3): e2304327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699748

RESUMO

Flexible composite films have attracted considerable attention due to great potential for healthcare, telecommunication, and aerospace. However, it is still challenging to achieve high conductivity and multifunctional integration, mainly due to poorly designed composite structures of these films. Herein, a novel sandwich-structured assembly strategy is proposed to fabricate flexible composite thin films made of Ag nanowire (AgNW) core and MXene layers by combination of spray coating and vacuum filtration process. In this case, ultrathin MXene layers play crucial roles in constructing compact composite structures strongly anchored to substrate with extensive hydrogen-bonding interactions. The resultant sandwich-structured MXene/AgNW composite thin films (SMAFs) exhibit ultrahigh electrical conductivity (up to 27193 S cm-1 ), resulting in exceptional electromagnetic interference shielding effectiveness of 16 223.3 dB cm2 g-1 and impressive Joule heating performance with rapid heating rate of 10.4 °C s-1 . Moreover, the uniform SMAFs can also be facilely cut into kirigami-patterned interconnects, which indicate superior strain-insensitive conductance even after long-term exposure to extreme temperatures. The demonstrated strategy offers a significant paradigm to construct multifunctional composite thin films for next-generation integrated flexible electronics with practical applications.

16.
Small ; 20(3): e2305181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699749

RESUMO

As a steady stream of electronic devices being discarded, a vast amount of electronic substrate waste of petroleum-based nondegradable polymers is generated, raising endless concerns about resource depletion and environmental pollution. With coupled reagent (CR)-grafted artificial marble waste (AMW@CR) as functional fillers, polylactic acid (PLA)-based highly stretchable biodegradable green composite (AMW@CR-SBGC) is prepared, with elongation at break up to more than 250%. The degradation mechanism of AMW@CR-SBGC is deeply revealed. AMW@CR not only contributed to the photodegradation of AMW@CR-SBGC but also significantly promoted the water degradation of AMW@CR-SBGC. More importantly, AMW@CR-SBGC showed great potential as sustainable green electronic substrates and AMW@CR-SBGC-based electronic skin can simulate the perception of human skin to strain signals. The outstanding programmable degradability, recyclability, and reusability of AMW@CR-SBGC enabled its application in transient electronics. As the first demonstration of artificial marble waste in electronic substrates, AMW@CR-SBGC killed three birds with one stone in terms of waste resourcing, e-waste reduction, and saving nonrenewable petroleum resources, opening up vast new opportunities for green electronics applications in areas such as health monitoring, artificial intelligence, and security.

17.
Small ; 20(6): e2305272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37702152

RESUMO

The magnetomechanical actuation of micropillars is developed for the contactless manipulation of miniaturized actuators and microtextured surfaces. Anisotropic geometry of micropillars can significantly enhance the magnetic actuation compared with their isotropic counterparts by directional stress distributions. However, this strategy is not viable for triangular micropillars owing to insufficient anisotropy. In this study, a significant improvement in the magnetic actuation of triangular micropillars using composite magnetic particles is reported. A minute and optimal amount of hard magnetic gamma-ferrite nanorods are hybridized with soft magnetic iron microspheres to generate synergistic effects of magnetic coupling and percolation phenomenon on the magnetic actuation of polymer composites. The addition of 1 wt% face-centered cubic-phased gamma-ferrite nanorods suppresses the magnetic coupling interference of body-centered cubic-phased iron microspheres. Furthermore, the nanorods reduce the percolation threshold by participating in the percolation of the microspheres. A systematic compositional study on the magnetization and magnetorheological properties reveals that the coupling effect dominates the percolation effect at a low magnetic field, whereas the percolation effect governs the magnetic actuation at a high magnetic field. This hybrid approach can help in designing material constituents for effective magnetic actuators and robotic systems that can sensitively respond to an external magnetic field.

18.
Small ; 20(15): e2307473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009727

RESUMO

With the advent of wireless technology, magnetic-carbon composites with strong electromagnetic wave (EMW) absorption capability in low-/middle-frequency range are highly desirable. However, it remains challenging for rational construction of such absorbers bearing multiple magnetic components that show uniform distribution and favorable magnetic loss. Herein, a facile metal-oxo cluster (MOC) precursor strategy is presented to produce high-efficiency magnetic carbon composites. Nanosized MOC Fe15 shelled with organic ligands is employed as a novel magnetic precursor, thus allowing in situ formation and uniform deposition of multicomponent magnetic Fe/Fe3O4@Fe3C and Fe/Fe3O4 nanoparticles on graphene oxides (GOs) and carbon nanotubes (CNTs), respectively. Owing to the good dispersity and efficient magnetic-dielectric synergy, quaternary Fe/Fe3O4@Fe3C-GO exhibits strong low-frequency absorption with RLmin of -53.5 dB at C-band and absorption bandwidth covering 3.44 GHz, while ultrahigh RLmin of -73.2 dB is achieved at X-band for ternary Fe/Fe3O4-CNT. The high performance for quaternary and ternary composites is further supported by the optimal specific EMW absorption performance (-15.7 dB mm-1 and -31.8 dB mm-1) and radar cross-section reduction (21.72 dB m2 and 34.37 dB m2). This work provides a new avenue for developing lightweight low-/middle-frequency EMW absorbers, and will inspire the investigation of more advanced EMW absorbers with multiple magnetic components and regulated microstructures.

19.
Small ; 20(1): e2305322, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641186

RESUMO

Solid-state batteries have become the most anticipated option for compatibility with high-energy density and safety. In situ polymerization, a novel strategy for the construction of solid-state systems, has extended its application from solid polymer electrolyte systems to other solid-state systems. This review summarizes the application of in situ polymerization strategies in solid-state batteries, which covers the construction of polymer, the formation of the electrolyte system, and the design of the full cell. For the polymer skeleton, multiple components and structures are being chosen. In the construction of solid polymer electrolyte systems, the choice of initiator for in situ polymerization is the focus of this review. New initiators, represented by lithium salts and additives, are the preferred choice because of their ability to play more diverse roles, while the coordination with other components can also improve the electrical properties of the system and introduce functionalities. In the construction of entire solid-state battery systems, the application of in situ polymerization to structure construction, interface construction, and the use of separators with multiplex functions has brought more possibilities for the development of various solid-state systems and even the perpetuation of liquid electrolytes.

20.
Small ; : e2404440, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087387

RESUMO

Silicon (Si) is one of the most promising anode materials for high-energy-density lithium-ion batteries. However, the huge volume expansion hinders its commercial application. Embedding amorphous Si nanoparticles in a porous carbon framework is an effective way to alleviate Si volume expansion, with the pore volume of the carbon substrates playing a pivotal role. This work demonstrates the impact of pore volume on the electrochemical performance of the silicon/carbon porous composites from two perspectives: 1) pore volume affects the loadings of Si particles; 2) pore volume affects the structural stability and mechanical properties. The smaller pore volume of the carbon substrate cannot support the high Si loadings, which results in forming a thick Si shell on the surface, thereby being detrimental to cycling stability and the diffusion of electrons and ions. On top of that, the carbon substrate with a larger pore volume has poor structural stability due to its fragility, which is also not conducive to realizing long cycle life and high rate performance. Achieving excellent electrochemical performances should match the proper pore volume with Si content. This study will provide important insights into the rational design of the silicon/carbon porous composites based on the pore volume of the carbon substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA