Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960712

RESUMO

This paper presents a cooperative control method for connected and automated vehicle (CAV) platooning, thus specifically addressing the challenge of sensor measurement errors that can disrupt the stability of the CAV platoon. Initially, the state-space equation of the CAV platooning system was formulated, thereby taking into account the measurement error of onboard sensors. The superposition effect of the sensor measurement errors was statistically analyzed, thereby elucidating its impact on cooperative control in CAV platooning. Subsequently, the application of a Kalman filter was proposed as a means to mitigate the adverse effects of measurement errors. Additionally, the CAV formation control problem was transformed into an optimal control decision problem by introducing an optimal control decision strategy that does not impose pure state variable inequality constraints. The proposed method was evaluated through simulation experiments utilizing real vehicle trajectory data from the Next Generation Simulation (NGSIM). The results demonstrate that the method presented in this study effectively mitigates the influence of measurement errors, thereby enabling coordinated vehicle-following behavior, achieving smooth acceleration and deceleration throughout the platoon, and eliminating traffic oscillations. Overall, the proposed method ensures the stability and comfort of the CAV platooning formation.

2.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679356

RESUMO

Freeway-diverging areas are prone to low traffic efficiency, congestion, and frequent accidents. Because of the fluctuation of the surrounding traffic flow distribution, the individual decision-making of vehicles in diverging areas is typically unable to plan a departure trajectory that balances safety and efficiency well. Consequently, it is critical that vehicles in freeway-diverging regions develop a lane-changing driving strategy that strives to improve both the safety and efficiency of divergence areas. For CAV leaving the diverging area, this study suggested a full-time horizon optimum solution. Since it is a dynamic strategy, an MPC system based on rolling time horizon optimization was constructed as the primary algorithm of the strategy. A simulation experiment was created to verify the viability of the proposed methodology based on a mixed-flow environment. The results show that, in comparison with the feasible strategies exiting to off-ramp, the proposed strategy can take over 60% reduction in lost time traveling through a diverging area under the premise of safety and comfort without playing a negative impact on the surrounding traffic flow. Thus, the MPC system designed for the subject vehicle is capable of performing an optimal driving strategy in diverging areas within the full-time and space horizon.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Algoritmos , Simulação por Computador , Segurança
3.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177606

RESUMO

To solve the problems of congestion and accident risk when multiple vehicles merge into the merging area of a freeway, a platoon split collaborative merging (PSCM) method was proposed for an on-ramp connected and automated vehicle (CAV) platoon under a mixed traffic environment composed of human-driving vehicles (HDV) and CAVs. The PSCM method mainly includes two parts: merging vehicle motion control and merging effect evaluation. Firstly, the collision avoidance constraints of merging vehicles were analyzed, and on this basis, a following-merging motion rule was proposed. Then, considering the feasibility of and constraints on the stability of traffic flow during merging, a performance measurement function with safety and merging efficiency as optimization objectives was established to screen for the optimal splitting strategy. Simulation experiments under traffic demand of 1500 pcu/h/lane and CAV ratios of 30%, 50%, and 70% were conducted respectively. It was shown that under the 50% CAV ratio, the average travel time of the on-ramp CAV platoon was reduced by 50.7% under the optimal platoon split strategy compared with the no-split control strategy. In addition, the average travel time of main road vehicles was reduced by 27.9%. Thus, the proposed PSCM method is suitable for the merging control of on-ramp CAV platoons under the condition of heavy main road traffic demand.

4.
Sensors (Basel) ; 22(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015761

RESUMO

Commercialization of autonomous vehicle technology is a major goal of the automotive industry, thus research in this space is rapidly expanding across the world. However, despite this high level of research activity, literature detailing a straightforward and cost-effective approach to the development of an AV research platform is sparse. To address this need, we present the methodology and results regarding the AV instrumentation and controls of a 2019 Kia Niro which was developed for a local AV pilot program. This platform includes a drive-by-wire actuation kit, Aptiv electronically scanning radar, stereo camera, MobilEye computer vision system, LiDAR, inertial measurement unit, two global positioning system receivers to provide heading information, and an in-vehicle computer for driving environment perception and path planning. Robotic Operating System software is used as the system middleware between the instruments and the autonomous application algorithms. After selection, installation, and integration of these components, our results show successful utilization of all sensors, drive-by-wire functionality, a total additional power* consumption of 242.8 Watts (*Typical), and an overall cost of $118,189 USD, which is a significant saving compared to other commercially available systems with similar functionality. This vehicle continues to serve as our primary AV research and development platform.


Assuntos
Condução de Veículo , Veículos Autônomos , Inteligência Artificial , Conservação de Recursos Energéticos , Análise Custo-Benefício
5.
Sensors (Basel) ; 21(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799464

RESUMO

Precise localization is critical to safety for connected and automated vehicles (CAV). The global navigation satellite system is the most common vehicle positioning method and has been widely studied to improve localization accuracy. In addition to single-vehicle localization, some recently developed CAV applications require accurate measurement of the inter-vehicle distance (IVD). Thus, this paper proposes a cooperative localization framework that shares the absolute position or pseudorange by using V2X communication devices to estimate the IVD. Four IVD estimation methods are presented: Absolute Position Differencing (APD), Pseudorange Differencing (PD), Single Differencing (SD) and Double Differencing (DD). Several static and dynamic experiments are conducted to evaluate and compare their measurement accuracy. The results show that the proposed methods may have different performances under different conditions. The DD shows the superior performance among the four methods if the uncorrelated errors are small or negligible (static experiment or dynamic experiment with open-sky conditions). When multi-path errors emerge due to the blocked GPS signal, the PD method using the original pseudorange is more effective because the uncorrelated errors cannot be eliminated by the differential technique.

6.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770433

RESUMO

Cooperative driving is an essential component of intelligent transport systems (ITSs). It promises greater safety, reduced accidents, efficient traffic flow, and fuel consumption reduction. Vehicle platooning is a representative service model for ITS. The principal sub-systems of platooning systems for connected and automated vehicles (CAVs) are cooperative adaptive cruise control (CACC) systems and platoon management systems. Based on vehicle state information received through vehicle-to-vehicle (V2V) communication, the CACC system allows platoon vehicles to maintain a narrower safety distance. In addition, the platoon management system using V2V communications allows vehicles to perform platoon maneuvers reliably and accurately. In this paper, we propose a CACC system with a variable time headway and a decentralized platoon join-in-middle maneuver protocol with a trajectory planning system considering the V2V communication delay for CAVs. The platoon join-in-middle maneuver is a challenging research subject as the research must consider the requirement of a more precise management protocol and lateral control for platoon safety and string stability. These CACC systems and protocols are implemented on a simulator for a connected and automated vehicle system, PreScan, and we validated our approach using a realistic control system and V2V communication system provided by PreScan.


Assuntos
Condução de Veículo , Comunicação
7.
Sensors (Basel) ; 21(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799998

RESUMO

Driving environment perception for automated vehicles is typically achieved by the use of automotive remote sensors such as radars and cameras. A vehicular wireless communication system can be viewed as a new type of remote sensor that plays a central role in connected and automated vehicles (CAVs), which are capable of sharing information with each other and also with the surrounding infrastructure. In this paper, we present the design and implementation of driving environment perception based on the fusion of vehicular wireless communications and automotive remote sensors. A track-to-track fusion of high-level sensor data and vehicular wireless communication data was performed to accurately and reliably locate the remote target in the vehicle surroundings and predict the future trajectory. The proposed approach was implemented and evaluated in vehicle tests conducted at a proving ground. The experimental results demonstrate that using vehicular wireless communications in conjunction with the on-board sensors enables improved perception of the surrounding vehicle located at varying longitudinal and lateral distances. The results also indicate that vehicle future trajectory and potential crash involvement can be reliably predicted with the proposed system in different cut-in driving scenarios.

8.
Sensors (Basel) ; 21(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396804

RESUMO

Cooperative perception, or collective perception (CP), is an emerging and promising technology for intelligent transportation systems (ITS). It enables an ITS station (ITS-S) to share its local perception information with others by means of vehicle-to-X (V2X) communication, thereby achieving improved efficiency and safety in road transportation. In this paper, we present our recent progress on the development of a connected and automated vehicle (CAV) and intelligent roadside unit (IRSU). The main contribution of the work lies in investigating and demonstrating the use of CP service within intelligent infrastructure to improve awareness of vulnerable road users (VRU) and thus safety for CAVs in various traffic scenarios. We demonstrate in experiments that a connected vehicle (CV) can "see" a pedestrian around the corners. More importantly, we demonstrate how CAVs can autonomously and safely interact with walking and running pedestrians, relying only on the CP information from the IRSU through vehicle-to-infrastructure (V2I) communication. This is one of the first demonstrations of urban vehicle automation using only CP information. We also address in the paper the handling of collective perception messages (CPMs) received from the IRSU, and passing them through a pipeline of CP information coordinate transformation with uncertainty, multiple road user tracking, and eventually path planning/decision-making within the CAV. The experimental results were obtained with manually driven CV, fully autonomous CAV, and an IRSU retrofitted with vision and laser sensors and a road user tracking system.

9.
Sensors (Basel) ; 18(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336576

RESUMO

Connected and automated vehicles (CAVs) have recently attracted a great deal of attention. Various studies have been conducted to improve vehicle and traffic safety through vehicle to vehicle (V2V) communication. In the field of CAVs, lane change research is considered a very challenging subject. This paper presents a cooperative lane change protocol, considering the impact of V2V communication delay. When creating a path for a lane change in the local path planning module, V2V communication delay occurs. Each vehicle was represented, in our study, by an oriented bounding box (OBB) to determine the risk of collision. We set up a highway driving simulation environment and verified the improved protocol by implementing a longitudinal and lateral controller.

10.
Accid Anal Prev ; 148: 105805, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33120182

RESUMO

Benefiting from the rapid development of communication and intelligent vehicle technology in recent years, most traffic information is capable of being collected, processed, and transmitted to each vehicle through a connected and automated vehicles (CAVs) system. To meet the higher requirements of driving safety in CAVs environment, it is necessary to develop more effective safety evaluation indicators that combine all the traffic information received by the vehicle. To this end, this study proposes a novel methodology for risk perception and warning strategy based on safety potential field model to minimize driving risk in the CAVs environment. A dynamic safety potential field model was constructed to describe the spatial distribution of driving risk encountered by vehicles. This safety potential field model can comprehensively consider the impact of various types of traffic information on driving risk. And then, a novel driving risk indicator, named potential field indicator (PFI), was established to evaluate the level of driving risk. Finally, an early warning strategy was proposed to prevent accidents, whose performance was evaluated by several simulations carried out through SUMO simulator. The comparison with some classic risk indicators indicate that our proposed PFI can more accurately reflect the actual driving risk faced by vehicles under different vehicle motion states and thus is more suitable for driving risk assessment in the CAVs environment. It is expected that the findings in this study could be valuable in improving the performance of strategic decision-making in driver assistance systems in the CAVs environment.


Assuntos
Acidentes de Trânsito/prevenção & controle , Condução de Veículo , Reconhecimento Automatizado de Padrão/métodos , Humanos , Sistemas Homem-Máquina , Veículos Automotores , Percepção , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA