Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Glob Chang Biol ; 29(17): 4880-4897, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365752

RESUMO

Tropical and subtropical dry woodlands are rich in biodiversity and carbon. Yet, many of these woodlands are under high deforestation pressure and remain weakly protected. Here, we assessed how deforestation dynamics relate to areas of woodland protection and to conservation priorities across the world's tropical dry woodlands. Specifically, we characterized different types of deforestation frontier from 2000 to 2020 and compared them to protected areas (PAs), Indigenous Peoples' lands and conservation areas for biodiversity, carbon and water. We found that global conservation priorities were always overrepresented in tropical dry woodlands compared to the rest of the globe (between 4% and 96% more than expected, depending on the type of conservation priority). Moreover, about 41% of all dry woodlands were characterized as deforestation frontiers, and these frontiers have been falling disproportionately in areas with important regional (i.e. tropical dry woodland) conservation assets. While deforestation frontiers were identified within all tropical dry woodland classes of woodland protection, they were lower than the average within protected areas coinciding with Indigenous Peoples' lands (23%), and within other PAs (28%). However, within PAs, deforestation frontiers have also been disproportionately affecting regional conservation assets. Many emerging deforestation frontiers were identified outside but close to PAs, highlighting a growing threat that the conserved areas of dry woodland will become isolated. Understanding how deforestation frontiers coincide with major types of current woodland protection can help target context-specific conservation policies and interventions to tropical dry woodland conservation assets (e.g. PAs in which deforestation is rampant require stronger enforcement, inactive deforestation frontiers could benefit from restoration). Our analyses also identify recurring patterns that can be used to test the transferability of governance approaches and promote learning across social-ecological contexts.


Assuntos
Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono
2.
Conserv Biol ; 37(3): e14036, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424856

RESUMO

The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43-0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25-29% of fish habitats, 16-23% of species, and 30-31% of priority conservation areas. Moreover, 6-21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.


Potenciación de la conservación de peces de agua dulce con mapeos de distribución de alta resolución a lo largo de un territorio extenso Resumen La falta de mapas de distribución en alta resolución para las especies de agua dulce en grandes extensiones es un reto importante para la conservación mundial de la biodiversidad. Diseñamos un marco simple para delinear la distribución de los peces de agua dulce en un mapa de drenaje en alta resolución basado en los modelos apilados de la distribución de las especies y la información de expertos. Aplicamos este marco a toda la ictiofauna de agua dulce en China (>1600 especies) para analizar los patrones en alta resolución de la biodiversidad y revelar los conflictos potenciales entre la biodiversidad de agua dulce y las perturbaciones antropogénicas. Todas las correlaciones entre los patrones espaciales de las facetas de la biodiversidad (riqueza de especies, endemismo y diversidad filogenética) fueron importantes (r = 0.43-0.98, p < 0.001). Las áreas con valores altos de diferentes facetas de la biodiversidad se traslaparon con las perturbaciones antropogénicas. Las áreas protegidas existentes que actualmente cubren el 22% del territorio de China, protegen 25-2% del hábitat de los peces, 16-23% de las especies y 30-31% de las áreas de conservación prioritarias. Además, 6-21% de las especies se encontraban totalmente desprotegidas. Estos resultados sugieren que se necesita extender la red de áreas protegidas para asegurar la conservación de los peces de agua dulce de China y los bienes y servicios que proporcionan. En concreto, los niveles medio a bajo de los grandes ríos y sus lagos asociados del noreste al suroeste de China albergaron los ensambles de especies más diversos y por lo tanto deberían ser el objetivo de las futuras expansiones de la red de áreas protegidas. De forma más generalizada, nuestro marco, el cual puede usarse para trazar mapas en alta resolución de la biodiversidad de agua dulce al combinar los datos de presencia de las especies y el conocimiento de los expertos sobre su distribución, proporciona un método eficiente para diseñar las áreas protegidas sin importar el ecosistema, región o grupo taxonómico considerado.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Filogenia , Conservação dos Recursos Naturais/métodos , Peixes , Lagos
3.
Glob Chang Biol ; 28(22): 6696-6710, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056462

RESUMO

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.


Assuntos
Micorrizas , Solo , Animais , Biodiversidade , Ecossistema , Florestas , Fungos , Humanos , Plantas , Microbiologia do Solo
4.
Conserv Biol ; 36(3): e13873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34865262

RESUMO

Tree diversity in Asia's tropical and subtropical forests is central to nature-based solutions. Species vulnerability to multiple threats, which affect provision of ecosystem services, is poorly understood. We conducted a region-wide, spatially explicit assessment of the vulnerability of 63 socioeconomically important tree species to overexploitation, fire, overgrazing, habitat conversion, and climate change. Trees were selected for assessment from national priority lists, and selections were validated by an expert network representing 20 countries. We used Maxent suitability modeling to predict species distribution ranges, freely accessible spatial data sets to map threat exposures, and functional traits to estimate threat sensitivities. Species-specific vulnerability maps were created as the product of exposure maps and sensitivity estimates. Based on vulnerability to current threats and climate change, we identified priority areas for conservation and restoration. Overall, 74% of the most important areas for conservation of these trees fell outside protected areas, and all species were severely threatened across an average of 47% of their native ranges. The most imminent threats were overexploitation and habitat conversion; populations were severely threatened by these factors in an average of 24% and 16% of their ranges, respectively. Our model predicted limited overall climate change impacts, although some study species were likely to lose over 15% of their habitat by 2050 due to climate change. We pinpointed specific natural areas in Borneo rain forests as hotspots for in situ conservation of forest genetic resources, more than 82% of which fell outside designated protected areas. We also identified degraded areas in Western Ghats, Indochina dry forests, and Sumatran rain forests as hotspots for restoration, where planting or assisted natural regeneration will help conserve these species, and croplands in southern India and Thailand as potentially important agroforestry options. Our results highlight the need for regionally coordinated action for effective conservation and restoration.


Especies de Árboles Valoradas y Amenazadas de Asia Tropical y Subtropical Resumen La diversidad de árboles en los bosques tropicales y subtropicales de Asia es un eje central para las soluciones basadas en la naturaleza. La vulnerabilidad de las especies ante las múltiples amenazas, las cuales afectan el suministro de servicios ambientales, es un tema poco comprendido. Realizamos una evaluación regional espacialmente explícita de la vulnerabilidad de 63 especies de árboles de importancia socioeconómica ante la sobreexplotación, incendios, sobrepastoreo, conversión del hábitat y cambio climático. Los árboles se seleccionaron para su evaluación a partir de listas nacionales de prioridades, y las selecciones fueron validadas por una red de expertos de 20 países. Usamos el modelado de idoneidad Maxent para predecir el rango de distribución de las especies, conjuntos de datos espaciales de libre acceso para mapear la exposición a las amenazas y rasgos funcionales para estimar la susceptibilidad a las amenazas. Con base en la vulnerabilidad a las amenazas actuales y al cambio climático, identificamos las áreas prioritarias para su conservación y restauración. En general, el 74% de las áreas más importantes para la conservación de estos árboles quedó fuera de las áreas protegidas y todas las especies estaban seriamente amenazadas en promedio en el 47% de su distribución nativa. Las amenazas más inminentes fueron la sobreexplotación y la conversión del hábitat; las poblaciones estuvieron seriamente amenazadas por estos factores en promedio en el 24% y 16% de su distribución, respectivamente. Nuestro modelo predijo un impacto general limitado del cambio climático, aunque algunas especies estudiadas tuvieron la probabilidad de perder más del 15% de su hábitat para el 2050 debido a este factor. Identificamos áreas naturales específicas en las selvas de Borneo como puntos calientes para la conservación in situ de los recursos genéticos forestales, más del 82% de los cuales estaban fuera de las áreas protegidas designadas. También identificamos áreas degradadas en los Ghats Occidentales, los bosques secos de Indochina y las selvas de Sumatra como puntos calientes para la restauración, en donde la siembra o la regeneración natural asistida ayudarán a conservar estas especies. Además, identificamos campos de cultivo al sur de India y Tailandia como potenciales opciones importantes de agrosilvicultura. Nuestros resultados resaltan la necesidad de acciones regionales coordinadas para la conservación y restauración efectivas.


Assuntos
Ecossistema , Árvores , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Tailândia
5.
Proc Natl Acad Sci U S A ; 115(13): 3404-3409, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531037

RESUMO

Reintroductions offer a powerful tool for reversing the effects of species extirpation and have been increasingly used over recent decades. However, this species-centered conservation approach has been criticized for its strong biases toward charismatic birds and mammals. Here, we investigated whether reintroduced species can be representative of the phylogenetic diversity within these two groups at a continental scale (i.e., Europe, North and Central America). Using null models, we found that reintroduced birds and mammals of the two subcontinents tend to be more evolutionarily distinct than expected by chance, despite strong taxonomic biases leading to low values of phylogenetic diversity. While evolutionary considerations are unlikely to have explicitly driven the allocation of reintroduction efforts, our results illustrate an interest of reintroduction practitioners toward species with fewer close relatives. We discuss how this phylogenetic framework allows us to investigate the contribution of reintroductions to the conservation of biodiversity at multiple geographic scales. We argue that because reintroductions rely on a parochial approach of conservation, it is important to first understand how the motivations and constraints at stake at a local context can induce phylogenetic biases before trying to assess the relevance of the allocation of reintroduction efforts at larger scales.


Assuntos
Biodiversidade , Evolução Biológica , Aves/fisiologia , Conservação dos Recursos Naturais , Mamíferos/fisiologia , Animais , América Central , Europa (Continente) , Filogenia
6.
J Environ Manage ; 292: 112788, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023787

RESUMO

Conservation of habitat patches and the related environment benefits both the focal species and human well-being. Many indices use the dispersal range to identify habitat patches with conservation priorities. However, there lacks approaches to identify environmental variables with conservation priorities (noted as target variables) in those identified patches. Therefore, this paper proposes an approach to identify environmental variables with conservation priorities in habitat patches using perception range and introduces the related assumption. It is assumed the agents select habitats based on their prior preference and perceived information in their perception ranges, which avoids the omniscient assumption of agents. Based on such assumptions, the proposed approach identifies the target variables by approximating how animals identify their habitats. It highlights the use of perception range and identifies target variables using the maximum information gain. The variables that contribute the largest reduction of uncertainty are regarded as the target variables in the habitat patches. Taking the Common Moorhen (Gallinula chloropus) living in Tianjin, China as the case, different scenarios with 100 m, 250 m and 500 m perception ranges are designed to illustrate the feasibility of the proposed approach. The proposed approach identifies the normalized vegetation index, rather than the distance to water surface, is the target variable in 42.3%, 58.9% and 72.1% habitat patches with given perception ranges. Adjustments are made on areas within the given perception range of each patch. More grid cells that has increased suitability index can be found in scenarios given 250 m perception range, which indicates the conservation area is not always the large the better. Optimizations are expected on both a better approximation method and a more thorough hypothesis of using perception range.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Aves , China , Humanos
7.
J Environ Manage ; 298: 113442, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371221

RESUMO

Ecosystem services (ESs) provided by the major basins of Central Asia are critical to human well-being and have attracted the attention of the international community. The identification of conservation priorities is of great significance for the maintenance and protection of key ESs. In this study, we quantified the spatiotemporal changes of net primary productivity (NPP), soil conservation (SC), water yield (WY) and habitat quality (HQ) in the major basins of Central Asia from 1995 to 2015. In addition, a GIS-based ordered weighted averaging (OWA) multi-criterion valuation method was adopted to identify potential conservation areas under 11 scenarios. Conservation priorities were determined by comparing the conservation efficiency under each scenario. Then, a broad range of indicators were considered to distinguish the driving factors affecting ESs in conservation priorities. The results show that the average conservation efficiency in the Issyk-Kul Basin was the highest, followed by the Am Darya Basin, Ili-Balkhash Basin and Syr Darya Basin. We observed that the conservation efficiency of the four ESs declined continuously in the Ili-Balkhash Basin from 1995 to 2015, while it changed steadily in the other three basins. Correlation analysis indicated that natural factors (e.g., precipitation and topography) were the main driving factors of WY, SR and NPP in conservation priorities, while HQ was more affected by socio-economic factors (e.g., population density and both cropland and urban percentages). The identification of conservation priorities and their driving factors plays an important role in ensuring the ecological security of the lower reaches, regulating the regional water balance and stabilizing the climate pattern.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Ásia , China , Sistemas de Informação Geográfica , Humanos , Solo
8.
Conserv Biol ; 34(1): 266-275, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31183898

RESUMO

As a landscape becomes increasingly fragmented through habitat loss, the individual patches become smaller and more isolated and thus less likely to sustain a local population. Metapopulation theory is appropriate for analyzing fragmented landscapes because it combines empirical landscape features with species-specific information to produce direct information on population extinction risks. This approach contrasts with descriptions of habitat fragments, which provide only indirect information on risk. Combining a spatially explicit metapopulation model with empirical data on endemic species' ranges and maps of habitat cover, we calculated the metapopulation capacity-a measure of a landscape's ability to sustain a metapopulation. Mangroves provide an ideal model landscape because they are of conservation concern and their patch boundaries are easily delineated. For 2000-20015, we calculated global metapopulation capacity for 99 metapopulations of 32 different bird species endemic to mangroves. Northern Australia and Southeast Asia had the highest richness of mangrove endemic birds. The Caribbean, Pacific coast of Central America, Madagascar, Borneo, and isolated patches in Southeast Asia in Myanmar and Malaysia had the highest metapopulation losses. Regions with the highest loss of habitat area were not necessarily those with the highest loss of metapopulation capacity. Often, it was not a matter of how much, but how the habitat was lost. Our method can be used by managers to evaluate and prioritize a landscape for metapopulation persistence.


Uso de la Teoría de Metapoblaciones para la Conservación Práctica de las Aves Endémicas de Manglares Resumen A medida que un paisaje se fragmenta cada vez más debido a la pérdida de hábitat, los parches se vuelven más pequeños y aislados y, por lo tanto, menos propensos a sostener a una población local. La teoría de metapoblaciones es adecuada para analizar paisajes fragmentados porque combina características empíricas del paisaje con información de cada especie para producir información directa sobre los riesgos de extinción de la población. Este enfoque contrasta con las descripciones de los fragmentos de hábitat que solo proporcionan información directa sobre el riesgo. Mediante la combinación de un modelo metapoblacional espacialmente explícito con datos empíricos de los rangos de distribución de especies endémicas y mapas de la cobertura del hábitat, calculamos la capacidad de la metapoblación - una medida de la capacidad del paisaje para sostener una metapoblación. Los manglares proporcionan un paisaje modelo ideal porque son de interés para la conservación y los límites de los parches son delineados fácilmente. Calculamos la capacidad de la metapoblación global para el período 2000-2015 de 99 metapoblaciones de 32 especies de aves endémicas de manglares. El norte de Australia y el sudeste de Asia tuvieron la mayor riqueza de aves endémicas de manglares. El Caribe, la costa del Pacífico de Centroamérica, Madagascar, Borneo y parches aislados en el sudeste de Asia en Myanmar y Malasia tuvieron las mayores pérdidas de metapoblaciones. Las regiones con mayor pérdida hábitat fueron necesariamente aquellas con mayor pérdida de capacidad de la metapoblación. A menudo no era una cuestión de cuánto, sino cómo se perdió el hábitat. Nuestro método se puede utilizar por manejadores para evaluar y priorizar un paisaje para la persistencia de la metapoblación.


Assuntos
Conservação dos Recursos Naturais , Modelos Biológicos , Animais , Austrália , Aves , Bornéu , Região do Caribe , América Central , Ecossistema , Madagáscar , Malásia , Mianmar , Dinâmica Populacional
9.
Conserv Biol ; 33(2): 369-376, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30039592

RESUMO

Knowing how much biodiversity is captured by protected areas (PAs) is important to meeting country commitments to international conservation agreements, such as the Convention on Biological Diversity, and analyzing gaps in species coverage by PAs contributes greatly to improved locating of new PAs and conservation of species. Regardless of their importance, global gap analyses have been conducted only for a few taxonomic groups (e.g., mangroves, corals, amphibians, birds, mammals). We conducted the first global gap analysis for a complete specious plant group, the highly threatened Cactaceae. Using geographic distribution data of 1438 cactus species, we assessed how well the current PA network represents them. We also systematically identified priority areas for conservation of cactus species that met and failed to meet conservation targets accounting for their conservation status. There were 261 species with no coverage by PAs (gap species). A greater percentage of cacti species (18%) lacked protection than mammals (9.7%) and birds (5.6%), and also a greater percentage of threatened cacti species (32%) were outside protected areas than amphibians (26.5%), birds (19.9%), or mammals (16%). The top 17% of the landscape that best captured covered species represented on average 52.9% of species ranges. The priority areas for gap species and the unprotected portion of the ranges of species that only partially met their conservation target (i.e., partial gap) captured on average 75.2% of their ranges, of which 100 were threatened gap species. These findings and knowledge of the threats affecting species provide information that can be used to improve planning for cacti conservation and highlight the importance of assessing the representation of major groups, such as plants, in PAs to determining the performance of the current PA network.


Análisis del Vacío Mundial de Especies de Cactáceas y Sitios Prioritarios para su Conservación Resumen El conocimiento sobre cuánta biodiversidad es captada por las áreas protegidas (AP) es importante para cumplir los compromisos de cada país con los acuerdos internacionales sobre conservación, como la Convención sobre la Diversidad Biológica, y el análisis de los vacíos en la cobertura de especies por las AP contribuye enormemente a una ubicación mejorada de AP nuevas y a la conservación de especies. Sin considerar su importancia, los análisis de vacío global se han realizado solamente para unos cuantos grupos taxonómicos (p. ej.: mangles, corales, anfibios, aves, mamíferos). Realizamos el primer análisis de vacío global para un grupo completo de especies de plantas, las Cactaceae, que se encuentran bajo seria amenaza. Evaluamos que tan bien representa la red actual de AP a las cactáceas con datos de distribución geográfica de 1438 especies de cactus. También identificamos sistemáticamente las áreas prioritarias de conservación para especies de cactus que cumplieron o fallaron los objetivos de conservación considerando el estado de conservación de las cactáceas. Hubo 261 especies sin cobertura en las AP (especies vacío). Un mayor porcentaje de especies de cactus (18%) careció de protección comparado con los mamíferos (9.7%) y las aves (5.6%), y también encontramos un mayor porcentaje de especies amenazadas de cactus (32%) fuera de las áreas protegidas comparado con los anfibios (26.5%), aves (19.9%) o mamíferos (16%). El 17% máximo del paisaje que mejor capturó a las especies cubiertas representó el 52.9% de la extensión de las especies. Las áreas prioritarias para las especies vacío y la porción desprotegida de la extensión de las especies que sólo cumplieron parcialmente con sus objetivos de conservación (es decir, el vacío parcial) capturaron en promedio el 75.2% de la extensión de las cactáceas, de las cuales 100 eran especies vacío amenazadas. Estos hallazgos y conocimiento sobre las amenazas que afectan a las especies proporcionan información que puede usarse para mejorar la planeación de la conservación de cactáceas y también resalta la importancia de la evaluación de la representación de grupos importantes, como las plantas, en AP para determinar el desempeño de la red contemporánea de AP.


Assuntos
Cactaceae , Anfíbios , Animais , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção
10.
Asian-Australas J Anim Sci ; 32(10): 1501-1510, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744325

RESUMO

Objective: An experiment was conducted to evaluate genetic diversity of 26 Chinese indigenous goats by 30 microsatellite markers, and then to define conservation priorities to set up the protection programs according to the weight given to within- and between-breed genetic diversity. Methods: Twenty-six representative populations of Chinese indigenous goats, 1351 total, were sampled from different geographic regions of China. Within-breed genetic diversity and marker polymorphism were estimated calculating the mean number of alleles (MNA), observed heterozygosities (HO), expected heterozygosities (He), fixation index (FIS), effective number of alleles (NE) and allelic richness (Rt). Conservation priorities were analyzed by statistical methods. Results: A relatively high level of genetic diversity was found in twenty-four populations, the exceptions were in the Daiyun and Fuqing goat populations. Within-breed kinship coefficients matrix identified seven highly inbred breeds which should be concerned. Of these, six breeds will get a negative contribution to heterozygosity when the method was based on proportional contribution to heterozygosity. Based on Weitzman or Piyasatian and Kinghorn methods, the breeds distant from others i.e. Inner Mongolia Cashmere goat, Chengdu Brown goat and Leizhou goat will obtain a high ranking. Evidence from Caballero and Toro and Fabuel et al. method prioritized Jining Gray goat, Liaoning Cashmere goat and Inner Mongolia Cashmere goat, that in agreement with results from Kinship-based methods. Conclusion: Conservation priorities had planned according to multiple methods. Our results suggest Inner Mongolia Cashmere goat (most methods), Jining Gray goat and Liaoning Cashmere goat (high contribution to heterozygosity and total diversity) should be prioritized based on most methods. Furthermore, Daiyun goat and Shannan White goat also should be prioritized based on consideration of effective population size. However, if one breed could survive in changing conditions all the time, the straightforward approach is to increase its utilization and attraction for production via mining breed germplasm characteristic.

11.
Glob Chang Biol ; 24(7): 3236-3253, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29532601

RESUMO

Alpine and Arctic species are considered to be particularly vulnerable to climate change, which is expected to cause habitat loss, fragmentation and-ultimately-extinction of cold-adapted species. However, the impact of climate change on glacial relict populations is not well understood, and specific recommendations for adaptive conservation management are lacking. We focused on the mountain hare (Lepus timidus) as a model species and modelled species distribution in combination with patch and landscape-based connectivity metrics. They were derived from graph-theory models to quantify changes in species distribution and to estimate the current and future importance of habitat patches for overall population connectivity. Models were calibrated based on 1,046 locations of species presence distributed across three biogeographic regions in the Swiss Alps and extrapolated according to two IPCC scenarios of climate change (RCP 4.5 & 8.5), each represented by three downscaled global climate models. The models predicted an average habitat loss of 35% (22%-55%) by 2100, mainly due to an increase in temperature during the reproductive season. An increase in habitat fragmentation was reflected in a 43% decrease in patch size, a 17% increase in the number of habitat patches and a 34% increase in inter-patch distance. However, the predicted changes in habitat availability and connectivity varied considerably between biogeographic regions: Whereas the greatest habitat losses with an increase in inter-patch distance were predicted at the southern and northern edges of the species' Alpine distribution, the greatest increase in patch number and decrease in patch size is expected in the central Swiss Alps. Finally, both the number of isolated habitat patches and the number of patches crucial for maintaining the habitat network increased under the different variants of climate change. Focusing conservation action on the central Swiss Alps may help mitigate the predicted effects of climate change on population connectivity.


Assuntos
Distribuição Animal , Mudança Climática , Conservação dos Recursos Naturais , Lebres/fisiologia , Tundra , Animais , Ecossistema , Modelos Biológicos , Reprodução , Suíça
12.
Ecol Appl ; 28(6): 1481-1493, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885260

RESUMO

Carbon storage in forests and its ability to offset global greenhouse gas emissions, as well as biodiversity and its capacity to support ecosystem functions and services, are often considered separately in landscape planning. However, the potential synergies between them are currently poorly understood. Identifying the spatial patterns and factors driving their co-occurrence across different climatic zones is critical to more effectively conserve forest ecosystems at the regional level. Here, we integrated information of National Forest Inventories and Breeding Bird Atlases across Europe and North America (Spain and Quebec, respectively), covering five subclimates (steppe, dry Mediterranean, humid Mediterranean, boreal, and temperate). In particular, this study aimed to (1) determine the spatial patterns of both forest carbon stocks and biodiversity (bird richness, tree richness, and overall biodiversity) and the factors that influence them; (2) establish the relationships between forest carbon stocks and biodiversity; and (3) define and characterize the areas of high (hotspots) and low (coldspots) values of carbon and biodiversity, and ultimately quantify their spatial overlap. Our results show that the factors affecting carbon and biodiversity vary between regions and subclimates. The highest values of carbon and biodiversity were found in northern Spain (humid Mediterranean subclimate) and southern Quebec (temperate subclimate) where there was more carbon as climate conditions were less limiting. High density and structural diversity simultaneously favored carbon stocks, tree, and overall biodiversity, especially in isolated and mountainous areas, often associated with steeper slopes and low accessibility. In addition, the relationship between carbon stocks and biodiversity was positive in both regions and all subclimates, being stronger where climate is a limiting factor for forest growth. The spatial overlap between hotspots of carbon and biodiversity provides an excellent opportunity for landscape planning to maintain carbon stocks and conserve biodiversity. The variables positively affecting carbon and biodiversity were also driving the hotspots of both carbon and biodiversity, emphasizing the viability of "win-win" solutions. Our results highlight the need to jointly determine the spatial patterns of ecosystem services and biodiversity for an effective and sustainable planning of forest landscapes that simultaneously support conservation and mitigate climate change.


Assuntos
Biodiversidade , Aves , Ciclo do Carbono , Clima , Florestas , Animais , Quebeque , Espanha , Árvores
13.
Proc Natl Acad Sci U S A ; 112(16): 5081-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25847995

RESUMO

Because habitat loss is the main cause of extinction, where and how much society chooses to protect is vital for saving species. The United States is well positioned economically and politically to pursue habitat conservation should it be a societal goal. We assessed the US protected area portfolio with respect to biodiversity in the country. New synthesis maps for terrestrial vertebrates, freshwater fish, and trees permit comparison with protected areas to identify priorities for future conservation investment. Although the total area protected is substantial, its geographic configuration is nearly the opposite of patterns of endemism within the country. Most protected lands are in the West, whereas the vulnerable species are largely in the Southeast. Private land protections are significant, but they are not concentrated where the priorities are. To adequately protect the nation's unique biodiversity, we recommend specific areas deserving additional protection, some of them including public lands, but many others requiring private investment.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Espécies em Perigo de Extinção , Geografia , Especificidade da Espécie , Estados Unidos
14.
J Environ Manage ; 166: 237-49, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26513322

RESUMO

Improving the efficiency of management in protected areas is imperative in a generalized context of limited conservation budgets. However, this is overlooked due to flaws in problem definition, general disregard for cost information, and a lack of suitable tools for measuring costs and management quality. This study describes an innovative methodological framework, implemented in the web application SIGEIN, focused on maximizing the quality of management against its costs, establishing an explicit justification for any decision. The tool integrates, with this aim, a procedure for prioritizing management objects according to a conservation value, modified by a functional criterion; a project management module; and a module for management of continuous assessment. This appraisal associates the relevance of the conservation targets, the efficacy of the methods employed, both resource and personnel investments, and the resulting costs. Preliminary results of a prototypical SIGEIN application on the Site of Community Importance Chafarinas Islands are included.


Assuntos
Conservação dos Recursos Naturais/métodos , Animais , Conservação dos Recursos Naturais/economia , Espécies em Perigo de Extinção , Extinção Biológica , Ilhas , Objetivos Organizacionais , Espanha
16.
Ecol Evol ; 14(8): e70160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145041

RESUMO

The small mammalian fauna plays pivotal roles in ecosystem dynamics and as crucial biodiversity indicators. However, recent research has raised concerns about the decline of mammalian species due to climate change. Consequently, significant attention is directed toward studying various big flagship mammalian species for conservation. However, small mammals such as the hog badgers (Mustelidae: Arctonyx) remain understudied regarding the impacts of climate change in Asia. The present study offers a comprehensive analysis of climate change effects on two mainland hog badger species, utilizing ensemble species distribution modeling. Findings reveal concerning outcomes, as only 52% of the IUCN extent is deemed suitable for the Great Hog Badger (Arctonyx collaris) and a mere 17% is ideal for the Northern Hog Badger (Arctonyx albogularis). Notably, projections suggest a potential reduction of over 26% in suitable areas for both species under future climate scenarios, with the most severe decline anticipated in the high-emission scenario of SSP585. These declines translate into evident habitat fragmentation, particularly impacting A. collaris, whose patches shrink substantially, contrasting with the relatively stable patches of A. albogularis. However, despite their differences, niche overlap analysis reveals an intriguing increase in overlap between the two species, indicating potential ecological shifts. The study underscores the importance of integrating climate change and habitat fragmentation considerations into conservation strategies, urging a reassessment of the IUCN status of A. albogularis. The insights gained from this research are crucial for improving protection measures by ensuring adequate legal safeguards and maintaining ecological corridors between viable habitat patches, which are essential for the conservation of hog badgers across mainland Asia. Furthermore, emphasizing the urgency of proactive efforts, particularly in countries with suitable habitats can help safeguard these small mammalian species and their ecosystems from the detrimental impacts of climate change.

17.
R Soc Open Sci ; 11(4): 240058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633351

RESUMO

This review comprehensively evaluates the impacts of anthropogenic threats on beaked whales (Ziphiidae)-a taxonomic group characterized by cryptic biology, deep dives and remote offshore habitat, which have challenged direct scientific observation. By synthesizing information published in peer-reviewed studies and grey literature, we identified available evidence of impacts across 14 threats for each Ziphiidae species. Threats were assessed based on their pathways of effects on individuals, revealing many gaps in scientific understanding of the risks faced by beaked whales. By applying a comprehensive taxon-level analysis, we found evidence that all beaked whale species are affected by multiple stressors, with climate change, entanglement and plastic pollution being the most common threats documented across beaked whale species. Threats assessed as having a serious impact on individuals included whaling, military sonar, entanglement, depredation, vessel strikes, plastics and oil spills. This review emphasizes the urgent need for targeted research to address a range of uncertainties, including cumulative and population-level impacts. Understanding the evidence and pathways of the effects of stressors on individuals can support future assessments, guide practical mitigation strategies and advance current understanding of anthropogenic impacts on rare and elusive marine species.

18.
Sci Total Environ ; 938: 173192, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761951

RESUMO

Anthropogenic pressure in areas of biodiversity importance erodes the integrity of the ecosystems they harbour, making features of biodiversity less buffered against extreme climatic events. We define the combination of these disturbances as compound events. We assessed compound event risk in protected areas (PAs) applying a spatial framework guided by criteria and quantitative thresholds associated with exposure to cyclones, drought, and intense human pressure. This assessment was used in a relational matrix to classify PAs with different risk of compound event occurrence. We identified PAs of higher conservation concern by quantifying the extent of human pressure in their surrounding landscape while harbouring large numbers of threatened vertebrate species. Of the 39,694 PAs assessed, very high risk of compound events was determined for 6965 PAs (17.5 %) related to cyclones and human pressure (mainly island hotspots), 6367 PAs (16 %) related to droughts and human pressure (island and continental hotspots), and 2031 PAs (5 %) to cyclones, drought and human pressure (mainly in island hotspots). From the subset of 2031 PAs assessed at very high risk, we identified 239 PAs of higher conservation concern distributed predominantly in the Caribbean Islands, Japan, North America Coastal Plain, Philippines, and Southwest Australia. Our work highlights PAs in the biodiversity hotspots where high risk of compound event occurrence poses a greater threat to species. We encourage researchers to adapt and apply this framework across other globally significant sites for conserving biodiversity to identify high risk-prone areas, and prevent further biodiversity decline.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Conservação dos Recursos Naturais/métodos , Humanos , Secas , Mudança Climática , Ecossistema , Animais , Clima
19.
Fundam Res ; 3(6): 939-950, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933013

RESUMO

Establishment of a national park protection system in China, including the latest target proposed to protect at least 30% of the land area, calls for a comprehensive exploration of conservation priorities incorporating multiple diversity facets. We herein evaluate the spatial distribution of Chinese flowering plants from the perspectives of richness, uniqueness, vulnerability, and evolutionary history, by integrating three mega-phylogenies and comprehensive distribution data. We detect significantly high consistency among hotspots of different diversity measures for Chinese flowering plants, suggesting that multiple facets of evolutionary diversity are concentrically distributed in China. Affording legal protection to these areas is expected to maximize positive conservation outcomes. We propose two integrative diversity indices by incorporating three richness-based and three phylogeny-based measures, respectively. Both methods identify areas with high species richness, but the integrative phylogeny-based index also locates key areas with ancient and unique evolutionary histories (e.g., Ailao-Wuliang Mts, Dabie Mts, Hainan rainforest, Karst area of Yunnan-Guizhou-Guangxi, Nanling Mts, and southeast coastal regions). Of all the diversity indices explored, phylogenetic endemism maximizes the incidental protection of other indices in most cases, emphasizing its significance for conservation planning. Finally, 42 priority areas are identified by combining the 5%-criterion hotspots of two integrative indices and the minimum area to protect all threatened species analyzed. These priorities cover only 13.3% of China's land area, but host 97.1% of species richness (23,394/24,095), 96.5% of endemic species (11,841/12,274), 100% of threatened species (2,613/2,613), and 99.3% of phylogenetic diversity for flowering plants involved in this study. These frameworks provide a solid scientific basis for national park planning in China.

20.
Glob Chang Biol ; 18(9): 2707-19, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501050

RESUMO

Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3-32% of the coastal zone of these islands could be lost from primary effects, and consequently 8-52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10-18% of the sample mammals in a moderate range loss scenario and for 22-46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7-48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA