Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.375
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36206754

RESUMO

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Assuntos
Cobre , Mucinas , Mucinas/metabolismo , Mucina-2 , Cobre/análise , Cobre/metabolismo , Intestinos , Muco/metabolismo , Mucosa Intestinal/metabolismo
2.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29668305

RESUMO

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostase , Imidazóis/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Óperon , Transporte Proteico
3.
Annu Rev Biochem ; 84: 923-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784051

RESUMO

Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.


Assuntos
Celulose/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Bactérias/metabolismo , Fungos/enzimologia , Fungos/metabolismo , Filogenia , Células Vegetais/química , Células Vegetais/metabolismo , Plantas/metabolismo , Polissacarídeos/metabolismo
4.
Mol Cell ; 81(12): 2520-2532.e16, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33930333

RESUMO

The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , RNA Ligase (ATP)/metabolismo , RNA de Transferência/metabolismo , Animais , Antioxidantes/fisiologia , Domínio Catalítico , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , RNA Ligase (ATP)/química , RNA Ligase (ATP)/genética , Splicing de RNA/genética , Splicing de RNA/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo
5.
Immunol Rev ; 321(1): 211-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715546

RESUMO

Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.


Assuntos
Cobre , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Morte Celular , Homeostase , Apoptose , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 121(4): e2311630121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232278

RESUMO

Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.


Assuntos
Infecções Bacterianas , Cobre , Animais , Humanos , Peixe-Zebra , Imunidade Inata , Citocinas , Receptores de Reconhecimento de Padrão
7.
Proc Natl Acad Sci U S A ; 121(26): e2316422121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900790

RESUMO

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.


Assuntos
Óxido Nítrico , Oxirredução , Oxirredutases , Filogenia , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Archaea/metabolismo , Archaea/genética , Rhodothermus/metabolismo , Rhodothermus/enzimologia , Rhodothermus/genética , Evolução Molecular , Bactérias/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
8.
Traffic ; 25(1): e12920, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886910

RESUMO

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Assuntos
Degeneração Hepatolenticular , Animais , Humanos , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Hepatócitos/metabolismo
9.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032054

RESUMO

The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.


Assuntos
Cobre , Degeneração Hepatolenticular , Animais , Humanos , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Degeneração Hepatolenticular/genética , Mamíferos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator de Transcrição AP-1/metabolismo
10.
Annu Rev Microbiol ; 75: 175-197, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343021

RESUMO

Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids.


Assuntos
Metaloides , Cobre/toxicidade
11.
Proc Natl Acad Sci U S A ; 120(4): e2214175120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649419

RESUMO

Copper is distinctive in electrocatalyzing reduction of CO2 into various energy-dense forms, but it often suffers from limited product selectivity including ethanol in competition with ethylene. Here, we describe systematically designed, bimetallic electrocatalysts based on copper/gold heterojunctions with a faradaic efficiency toward ethanol of 60% at currents in excess of 500 mA cm-2. In the modified catalyst, the ratio of ethanol to ethylene is enhanced by a factor of 200 compared to copper catalysts. Analysis by ATR-IR measurements under operating conditions, and by computational simulations, suggests that reduction of CO2 at the copper/gold heterojunction is dominated by generation of the intermediate OCCOH*. The latter is a key contributor in the overall, asymmetrical electrohydrogenation of CO2 giving ethanol rather than ethylene.

12.
Proc Natl Acad Sci U S A ; 120(10): e2216722120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848556

RESUMO

Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.


Assuntos
Cobre , Complexo IV da Cadeia de Transporte de Elétrons , Hidrazinas , Ionóforos , Ferredoxinas/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(23): e2215195120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253004

RESUMO

The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superfície Celular/metabolismo , Etilenos/metabolismo , Transdução de Sinais/fisiologia
14.
Proc Natl Acad Sci U S A ; 120(40): e2305961120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751556

RESUMO

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.


Assuntos
Selênio , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Cobre , Selênio/farmacologia , Oxirredução , Selenoproteínas/genética
15.
Genes Dev ; 32(13-14): 944-952, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945887

RESUMO

The levels of copper, which is an essential element in living organisms, are under tight homeostatic control. Inactivating mutations in ATP7B, a P-type Cu-ATPase that functions in copper excretion, promote aberrant accumulation of the metal, primarily the in liver and brain. This condition underlies Wilson's disease, a severe autosomal recessive disorder characterized by profound hepatic and neurological deficits. Current treatment regimens rely on the use of broad specificity metal chelators as "decoppering" agents; however, there are side effects that limit their effectiveness. Here, we present the characterization of DPM-1001 {methyl 4-[7-hydroxy-10,13-dimethyl-3-({4-[(pyridin-2-ylmethyl)amino]butyl}amino)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl] pentanoate} as a potent and highly selective chelator of copper that is orally bioavailable. Treatment of cell models, including fibroblasts derived from Wilson's disease patients, eliminated adverse effects associated with copper accumulation. Furthermore, treatment of the toxic milk mouse model of Wilson's disease with DPM-1001 lowered the levels of copper in the liver and brain, removing excess copper by excretion in the feces while ameliorating symptoms associated with the disease. These data suggest that it may be worthwhile to investigate DPM-1001 further as a new therapeutic agent for the treatment of Wilson's disease, with potential for application in other indications associated with elevated copper, including cancer and neurodegenerative diseases.


Assuntos
Quelantes/farmacologia , Cobre/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Quelantes/uso terapêutico , Cobre/toxicidade , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Degeneração Hepatolenticular/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos
16.
J Biol Chem ; 300(1): 105479, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981210

RESUMO

Autophagy is a degradative pathway that plays an important role in maintaining cellular homeostasis. Dysfunction of autophagy is associated with the progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although one of the typical features of brain aging is an accumulation of redox-active metals that eventually lead to neurodegeneration, a plausible link between trace metal-induced neurodegeneration and dysregulated autophagy has not been clearly determined. Here, we used a cupric chloride-induced neurodegeneration model in MN9D dopaminergic neuronal cells along with ultrastructural and biochemical analyses to demonstrate impaired autophagic flux with accompanying lysosomal dysfunction. We found that a surge of cytosolic calcium was involved in cupric chloride-induced dysregulated autophagy. Consequently, buffering of cytosolic calcium by calbindin-D28K overexpression or co-treatment with the calcium chelator BAPTA attenuated the cupric chloride-induced impairment in autophagic flux by ameliorating dysregulation of lysosomal function. Thus, these events allowed the rescue of cells from cupric chloride-induced neuronal death. These phenomena were largely confirmed in cupric chloride-treated primary cultures of cortical neurons. Taken together, these results suggest that abnormal accumulation of trace metal elements and a resultant surge of cytosolic calcium leads to neuronal death by impairing autophagic flux at the lysosomal level.


Assuntos
Autofagia , Cálcio , Cobre , Neurônios Dopaminérgicos , Lisossomos , Autofagia/efeitos dos fármacos , Autofagia/genética , Cálcio/metabolismo , Cobre/farmacologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/ultraestrutura , Lisossomos/metabolismo , Animais , Camundongos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo
17.
J Biol Chem ; 300(6): 107314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657861

RESUMO

The copper reductase activity of histone H3 suggests undiscovered characteristics within the protein. Here, we investigated the function of leucine 126 (H3L126), which occupies an axial position relative to the copper binding. Typically found as methionine or leucine in copper-binding proteins, the axial ligand influences the reduction potential of the bound ion, modulating its tendency to accept or yield electrons. We found that mutation of H3L126 to methionine (H3L126M) enhanced the enzymatic activity of native yeast nucleosomes in vitro and increased intracellular levels of Cu1+, leading to improved copper-dependent activities including mitochondrial respiration and growth in oxidative media with low copper. Conversely, H3L126 to histidine (H3L126H) mutation decreased nucleosome's enzymatic activity and adversely affected copper-dependent activities in vivo. Our findings demonstrate that H3L126 fine-tunes the copper reductase activity of nucleosomes and highlights the utility of nucleosome enzymatic activity as a novel paradigm to uncover previously unnoticed features of histones.


Assuntos
Cobre , Histonas , Leucina , Nucleossomos , Saccharomyces cerevisiae , Nucleossomos/metabolismo , Histonas/metabolismo , Cobre/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Leucina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Oxirredutases/metabolismo , Oxirredutases/genética , Substituição de Aminoácidos , Mutação de Sentido Incorreto
18.
J Biol Chem ; 300(6): 107310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657863

RESUMO

Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.


Assuntos
Cobre , Histidina , Proteínas Priônicas , Domínios Proteicos , Animais , Camundongos , Motivos de Aminoácidos , Cobre/metabolismo , Cobre/química , Histidina/metabolismo , Histidina/química , Separação de Fases , Proteínas Priônicas/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética
19.
Plant J ; 117(1): 107-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753665

RESUMO

Black pepper (Piper nigrum L.), the world renown as the King of Spices, is not only a flavorsome spice but also a traditional herb. Piperine, a species-specific piper amide, is responsible for the major bioactivity and pungent flavor of black pepper. However, several key steps for the biosynthesis of piperoyl-CoA (acyl-donor) and piperidine (acyl-acceptor), two direct precursors for piperine, remain unknown. In this study, we used guilt-by-association analysis of the combined metabolome and transcriptome, to identify two feruloyldiketide-CoA synthases responsible for the production of the C5 side chain scaffold feruloyldiketide-CoA intermediate, which is considered the first and important step to branch metabolic fluxes from phenylpropanoid pathway to piperine biosynthesis. In addition, we also identified the first two key enzymes for piperidine biosynthesis derived from lysine in P. nigrum, namely a lysine decarboxylase and a copper amine oxidase. These enzymes catalyze the production of cadaverine and 1-piperideine, the precursors of piperidine. In vivo and in vitro experiments verified the catalytic capability of them. In conclusion, our findings revealed enigmatic key steps of piperine biosynthetic pathway and thus provide a powerful reference for dissecting the biosynthetic logic of other piper amides.


Assuntos
Piper nigrum , Piper nigrum/genética , Alcamidas Poli-Insaturadas , Piperidinas , Perfilação da Expressão Gênica , Metaboloma
20.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963329

RESUMO

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Assuntos
Cobre , Ferroptose , Hipóxia , Camundongos Endogâmicos C57BL , Animais , Cobre/metabolismo , Cobre/deficiência , Masculino , Camundongos , Hipóxia/metabolismo , Humanos , Células Hep G2 , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo , Metabolismo dos Lipídeos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Ferro/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , PPAR alfa/metabolismo , PPAR alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA