Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 107-135, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882259

RESUMO

DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.


Assuntos
Dano ao DNA/genética , Reparo do DNA/fisiologia , Anemia de Fanconi/genética , Vertebrados/genética , Acetaldeído/metabolismo , Animais , DNA/química , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Replicação do DNA , Anemia de Fanconi/metabolismo , Humanos
2.
Cell ; 167(2): 498-511.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693351

RESUMO

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , N-Glicosil Hidrolases/metabolismo , Animais , Sistema Livre de Células/química , Reagentes de Ligações Cruzadas/química , DNA/biossíntese , DNA/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Ficusina/química , N-Glicosil Hidrolases/química , Xenopus laevis
3.
Genes Dev ; 34(11-12): 832-846, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354836

RESUMO

DNA interstrand cross-links (ICLs) are a form of DNA damage that requires the interplay of a number of repair proteins including those of the Fanconi anemia (FA) and the homologous recombination (HR) pathways. Pathogenic variants in the essential gene BRCA2/FANCD1, when monoallelic, predispose to breast and ovarian cancer, and when biallelic, result in a severe subtype of Fanconi anemia. BRCA2 function in the FA pathway is attributed to its role as a mediator of the RAD51 recombinase in HR repair of programmed DNA double-strand breaks (DSB). BRCA2 and RAD51 functions are also required to protect stalled replication forks from nucleolytic degradation during response to hydroxyurea (HU). While RAD51 has been shown to be necessary in the early steps of ICL repair to prevent aberrant nuclease resection, the role of BRCA2 in this process has not been described. Here, based on the analysis of BRCA2 DNA-binding domain (DBD) mutants (c.8488-1G>A and c.8524C>T) discovered in FA patients presenting with atypical FA-like phenotypes, we establish that BRCA2 is necessary for the protection of DNA at ICLs. Cells carrying BRCA2 DBD mutations are sensitive to ICL-inducing agents but resistant to HU treatment consistent with relatively high HR repair in these cells. BRCA2 function at an ICL protects against DNA2-WRN nuclease-helicase complex and not the MRE11 nuclease that is implicated in the resection of HU-induced stalled replication forks. Our results also indicate that unlike the processing at HU-induced stalled forks, the function of the SNF2 translocases (SMARCAL1, ZRANB3, or HLTF), implicated in fork reversal, are not an integral component of the ICL repair, pointing to a different mechanism of fork protection at different DNA lesions.


Assuntos
Proteína BRCA2/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/fisiopatologia , Proteína BRCA2/genética , Linhagem Celular , DNA/química , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Recombinação Homóloga/genética , Humanos , Hidroxiureia/farmacologia , Mutação , Domínios Proteicos/genética , Rad51 Recombinase/metabolismo
4.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043796

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Peptidoglicano , Peptidil Transferases , Proteínas de Bactérias/química , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Catálise , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/genética
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115399

RESUMO

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Assuntos
Síndrome de Bloom/genética , DNA Cruciforme/genética , Instabilidade Genômica/genética , Alelos , Proteínas de Transporte/genética , Linhagem Celular , DNA Topoisomerases Tipo I/genética , Humanos , Mutação/genética , Ligação Proteica/genética , RecQ Helicases/genética , Recombinação Genética/genética , Solubilidade
6.
Anal Bioanal Chem ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739158

RESUMO

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 µM, and the limit of detection is 17.5 µM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·-, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

7.
Macromol Rapid Commun ; : e2400303, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991017

RESUMO

One method to improve the properties of covalent adaptable networks (CANs) is to reinforce them with a fraction of permanent cross-links without sacrificing their (re)processability. Here, a simple method to synthesize poly(n-hexyl methacrylate) (PHMA) and poly(n-lauryl methacrylate) (PLMA) networks containing static dialkyl disulfide cross-links (utilizing bis(2-methacryloyl)oxyethyl disulfide, or DSDMA, as a permanent cross-linker) and dynamic dialkylamino sulfur-sulfur cross-links (utilizing BiTEMPS methacrylate as a dissociative dynamic covalent cross-linker) is presented. The robustness and (re)processability of the CANs are demonstrated, including the full recovery of cross-link density after recycling. The authors also investigate the effect of static cross-link content on the stress relaxation responses of the CANs with and without percolated, static cross-links. As PHMA and PLMA have very different activation energies of their respective cooperative segmental mobilities, it is shown that the dissociative CANs without percolated, static cross-links have activation energies of stress relaxation that are dominated by the dissociation of BiTEMPS methacrylate cross-links rather than by the cooperative relaxations of backbone segments, i.e., the alpha relaxation. In CANs with percolated, static cross-links, the segmental relaxation of side chains, i.e., the beta relaxation, is critical in allowing for large-scale stress relaxation and governs their activation energies of stress relaxation.

8.
Genes Dev ; 30(6): 645-59, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980189

RESUMO

Deficiency of FANCD2/FANCI-associated nuclease 1 (FAN1) in humans leads to karyomegalic interstitial nephritis (KIN), a rare hereditary kidney disease characterized by chronic renal fibrosis, tubular degeneration, and characteristic polyploid nuclei in multiple tissues. The mechanism of how FAN1 protects cells is largely unknown but is thought to involve FAN1's function in DNA interstrand cross-link (ICL) repair. Here, we describe a Fan1-deficient mouse and show that FAN1 is required for cellular and organismal resistance to ICLs. We show that the ubiquitin-binding zinc finger (UBZ) domain of FAN1, which is needed for interaction with FANCD2, is not required for the initial rapid recruitment of FAN1 to ICLs or for its role in DNA ICL resistance. Epistasis analyses reveal that FAN1 has cross-link repair activities that are independent of the Fanconi anemia proteins and that this activity is redundant with the 5'-3' exonuclease SNM1A. Karyomegaly becomes prominent in kidneys and livers of Fan1-deficient mice with age, and mice develop liver dysfunction. Treatment of Fan1-deficient mice with ICL-inducing agents results in pronounced thymic and bone marrow hypocellularity and the disappearance of c-kit(+) cells. Our results provide insight into the mechanism of FAN1 in ICL repair and demonstrate that the Fan1 mouse model effectively recapitulates the pathological features of human FAN1 deficiency.


Assuntos
Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Rim/patologia , Hepatopatias/genética , Animais , Medula Óssea/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Epistasia Genética , Exodesoxirribonucleases/metabolismo , Fígado/patologia , Camundongos , Enzimas Multifuncionais , Estrutura Terciária de Proteína , Transporte Proteico
9.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928210

RESUMO

Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.


Assuntos
Encéfalo , Formaldeído , Análise de Sequência de RNA , Fixação de Tecidos , Formaldeído/química , Animais , Camundongos , Encéfalo/metabolismo , Fixação de Tecidos/métodos , Análise de Sequência de RNA/métodos , Doença de Alzheimer/genética , Polímeros/química , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética
10.
Semin Cell Dev Biol ; 113: 113-131, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558144

RESUMO

Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFß inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.


Assuntos
Dano ao DNA/genética , Anemia de Fanconi/diagnóstico , Animais , Camundongos , Modelos Animais , Peixe-Zebra
11.
J Proteome Res ; 22(9): 2900-2908, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552582

RESUMO

Chemical cross-linking with mass spectrometry provides low-resolution structural information on proteins in cells and tissues. Combined with quantitation, it can identify changes in the interactome between samples, for example, control and drug-treated cells or young and old mice. A difference can originate from protein conformational changes that alter the solvent-accessible distance separating the cross-linked residues. Alternatively, a difference can result from conformational changes localized to the cross-linked residues, for example, altering the solvent exposure or reactivity of those residues or post-translational modifications of the cross-linked peptides. In this manner, cross-linking is sensitive to a variety of protein conformational features. Dead-end peptides are cross-links attached only at one end to a protein with the other terminus being hydrolyzed. As a result, changes in their abundance reflect only conformational changes localized to the attached residue. For this reason, analyzing both quantified cross-links and their corresponding dead-end peptides can help elucidate the likely conformational changes giving rise to observed differences in cross-link abundance. We describe analysis of dead-end peptides in the XLinkDB public cross-link database and, with quantified mitochondrial data isolated from failing heart versus healthy mice, show how a comparison of abundance ratios between cross-links and their corresponding dead-end peptides can be leveraged to reveal possible conformational explanations.


Assuntos
Peptídeos , Proteínas , Animais , Camundongos , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas/métodos , Conformação Proteica , Solventes , Reagentes de Ligações Cruzadas/química
12.
J Biol Chem ; 298(7): 102055, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605665

RESUMO

Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA-protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5'-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5'-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2-36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.


Assuntos
Reparo do DNA , DNA , Desoxirribonuclease IV (Fago T4-Induzido) , Escherichia coli , Bases de Schiff , DNA/química , Dano ao DNA , Desoxirribonuclease IV (Fago T4-Induzido)/química , Escherichia coli/química , Peptídeos , Proteínas
13.
Proteins ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589191

RESUMO

Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.

14.
J Virol ; 96(8): e0166821, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343783

RESUMO

Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Detergentes , Glicoproteínas/química , Glicoproteínas/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , HIV-1/química , HIV-1/genética , HIV-1/imunologia , Humanos , Lisina , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
15.
Amino Acids ; 55(6): 807-819, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165293

RESUMO

Transglutaminases (TGs) are a protein family that catalyzes isopeptide bond formation between glutamine and lysine residues of various proteins. There are eight TG isozymes in humans, and each is involved in diverse biological phenomena due to their characteristic distribution. Abnormal activity of TG1 and TG2, which are major TG isozymes, is believed to cause various diseases, such as ichthyosis and celiac disease. To elucidate TGs' mechanisms of action and develop new therapeutic strategies, it is essential to develop bioprobes that can specifically examine the activity of each TG isozyme, which has not been sufficiently studied. We previously have identified several substrate peptide sequences containing Gln residues for each isozyme and developed a method to detect isozyme-specific activities by incorporating a labeled substrate peptide into lysine residues of proteins. We prepared the fluorescein isothiocyanate (FITC)-labeled Gln substrate peptide (FITC-K5 and FITC-T26) and Rhodamine B-labeled Lys substrate peptide (RhoB-Kpep). Each TG reaction specifically cross-linked these probe pairs, and the proximity of FITC and Rhodamine B significantly decreased the fluorescence intensity of FITC depending on the concentration and reaction time of each TG. In this study, we developed a peptide-based biosensor that quickly and easily measures TG isozyme-specific activity. This probe is expected to be helpful in elucidating TG's physiological and pathological functions and in developing compounds that modulate TG activity.


Assuntos
Isoenzimas , Transglutaminases , Humanos , Transglutaminases/metabolismo , Isoenzimas/metabolismo , Fluoresceína-5-Isotiocianato , Lisina , Peptídeos/metabolismo , Fluoresceína
16.
Methods ; 203: 179-186, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-32987130

RESUMO

The human population is ageing globally, and the number of old people is increasing yearly. Diabetes is common in the elderly, and the number of diabetic patients is also increasing. Elderly and diabetic patients often have musculoskeletal disorder, which are associated with advanced glycation end products (AGEs). AGEs are heterogeneous molecules derived from non-enzymatic products of the reaction of glucose or other sugar derivatives with proteins or lipids, and many different types of AGEs have been identified. AGEs are a biomarker for ageing and for evaluating disease conditions. Fluorescence, spectroscopy, mass spectrometry, chromatography, and immunological methods are commonly used to measure AGEs, but there is no standardized evaluation method because of the heterogeneity of AGEs. The formation of AGEs is irreversible, and they accumulate in tissue, eventually causing damage. AGE accumulation has been confirmed in neuromusculoskeletal tissues, including bones, cartilage, muscles, tendons, ligaments, and nerves, where they adversely affect biomechanical properties by causing charge changes and forming cross-linkages. AGEs also bind to receptors, such as the receptor for AGEs (RAGE), and induce inflammation by intracellular signal transduction. These mechanisms cause many varied aging and diabetes-related pathological conditions, such as osteoporosis, osteoarthritis, sarcopenia, tendinopathy, and neuropathy. Understanding of AGEs related pathomechanism may lead to develop novel methods for the prevention and therapy of such disorders which affect patients' quality of life. Herein, we critically review the current methodology used for detecting AGEs, and present potential mechanisms by which AGEs cause or exacerbate musculoskeletal disorders.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Idoso , Cartilagem , Diabetes Mellitus/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Qualidade de Vida , Receptor para Produtos Finais de Glicação Avançada/metabolismo
17.
Bioorg Chem ; 140: 106769, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633128

RESUMO

Photoinduced DNA cross-linking process showed advantages of high spatio-temporal resolution and control. We have designed, synthesized, and characterized several 4,4'-dibromo binaphthalene analogues (1a-f) that can be activated by 350 nm irradiation to induce various DNA damage, including DNA interstrand cross-links (ICL) formation, strand cleavages, and alkaline labile DNA lesions. The degree and types of DNA damage induced by these compounds depend on the leaving groups of the substrates, pH value of the buffer solution, and DNA sequences. The DNA ICL products were produced from the carbocations formed via the oxidation of free radicals photo-generated from 1a-f. Most of these compounds alone exhibited minimum cytotoxicity towards cancer cells while 350 nm irradiation greatly improved their anticancer effects (up to 40-fold enhancement) because of photo-induced cellular DNA damage. This work provides guidance for further design of photo-inducible DNA cross-linking agents as potent photo-activated anticancer prodrugs with good control over toxicity and selectivity.


Assuntos
Neoplasias , Pró-Fármacos , DNA , Dano ao DNA
18.
Graefes Arch Clin Exp Ophthalmol ; 261(9): 2435-2453, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36881260

RESUMO

PURPOSE: The success of corneal collagen cross-linking in altering keratoconus' clinical course has driven a search for further uses of this procedure. This literature review aims to analyze the scientific evidence available for the benefit of cross-linking in the management of ophthalmic diseases other than progressive keratoconus or ectasia induced by corneal refractive procedures. METHODS: A systemic literature review. RESULTS: We reviewed 97 studies. We found that collagen cross-linking can limit the progression of several other corneal ectasias, thus reducing and limiting the need for keratoplasty. Collagen cross-linking also can reduce the refractive power of the cornea and can be considered for a moderate degree of bacterial keratitis or when the organism is unidentified, which is refractive to antibiotics alone. However, the comparative rarity of these procedures has limited the extent of evidence. In fungal, Acanthamoeba, and herpes virus keratitis, the evidence is inconclusive of the safety and efficacy of cross-linking. CONCLUSION: Current clinical data is limited, and laboratory data has not fully correlated with published clinical data.


Assuntos
Ceratite Herpética , Ceratocone , Fotoquimioterapia , Humanos , Colágeno/uso terapêutico , Crosslinking Corneano , Reagentes de Ligações Cruzadas/uso terapêutico , Reagentes de Ligações Cruzadas/farmacologia , Ceratocone/diagnóstico , Ceratocone/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico , Raios Ultravioleta
19.
Eur Spine J ; 32(4): 1401-1410, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877366

RESUMO

PURPOSE: To compare the residual range of motion (ROM) of cortical screw (CS) versus pedicle screw (PS) instrumented lumbar segments and the additional effect of transforaminal interbody fusion (TLIF) and cross-link (CL) augmentation. METHODS: ROM of thirty-five human cadaver lumbar segments in flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression (AC) was recorded. After instrumenting the segments with PS (n = 17) and CS (n = 18), ROM in relation to the uninstrumented segments was evaluated without and with CL augmentation before and after decompression and TLIF. RESULTS: CS and PS instrumentations both significantly reduced ROM in all loading directions, except AC. In undecompressed segments, a significantly lower relative (and absolute) reduction of motion in LB was found with CS 61% (absolute 3.3°) as compared to PS 71% (4.0°; p = 0.048). FE, AR, AS, LS, and AC values were similar between CS and PS instrumented segments without interbody fusion. After decompression and TLIF insertion, no difference between CS and PS was found in LB and neither in any other loading direction. CL augmentation did not diminish differences in LB between CS and PS in the undecompressed state but led to an additional small AR reduction of 11% (0.15°) in CS and 7% (0.05°) in PS instrumentation. CONCLUSION: Similar residual motion is found with CS and PS instrumentation, except of slightly, but significantly inferior reduction of ROM in LB with CS. Differences between CS and PS in diminish with TLIF but not with CL augmentation.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Vértebras Lombares/cirurgia , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Cadáver , Descompressão
20.
Genes Dev ; 29(18): 1955-68, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26338419

RESUMO

MERIT40 is an essential component of the RAP80 ubiquitin recognition complex that targets BRCA1 to DNA damage sites. Although this complex is required for BRCA1 foci formation, its physiologic role in DNA repair has remained enigmatic, as has its relationship to canonical DNA repair mechanisms. Surprisingly, we found that Merit40(-/-) mice displayed marked hypersensitivity to DNA interstrand cross-links (ICLs) but not whole-body irradiation. MERIT40 was rapidly recruited to ICL lesions prior to FANCD2, and Merit40-null cells exhibited delayed ICL unhooking coupled with reduced end resection and homologous recombination at ICL damage. Interestingly, Merit40 mutation exacerbated ICL-induced chromosome instability in the context of concomitant Brca2 deficiency but not in conjunction with Fancd2 mutation. These findings implicate MERIT40 in the earliest stages of ICL repair and define specific functional interactions between RAP80 complex-dependent ubiquitin recognition and the Fanconi anemia (FA)-BRCA ICL repair network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína BRCA2/metabolismo , Reparo do DNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Instabilidade Cromossômica/genética , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Chaperonas de Histonas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA