Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Amino Acids ; 49(10): 1743-1754, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744579

RESUMO

Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.


Assuntos
Isomerases de Aminoácido , Antozoários , Proteínas de Artrópodes , Crassostrea , Mutação de Sentido Incorreto , Penaeidae , Racemases e Epimerases , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Substituição de Aminoácidos , Animais , Antozoários/enzimologia , Antozoários/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Crassostrea/enzimologia , Crassostrea/genética , Camundongos , Penaeidae/enzimologia , Penaeidae/genética , Estrutura Secundária de Proteína , Racemases e Epimerases/química , Racemases e Epimerases/genética
2.
Amino Acids ; 49(9): 1521-1533, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28681245

RESUMO

More than half a century ago researchers thought that D-amino acids had a minor function compared to L-enantiomers in biological processes. Many evidences have shown that D-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, D-serine (D-Ser) acts as a co-agonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. D-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, D-aspartate (D-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. D-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain D-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of D-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of D-amino acids: amino acid racemase in the synthesis and D-amino acid oxidase in the degradation.


Assuntos
Isomerases de Aminoácido/química , D-Aminoácido Oxidase/química , Ácido D-Aspártico/química , Serina/química , Isomerases de Aminoácido/metabolismo , Venenos de Anfíbios/química , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/química , Bactérias/metabolismo , D-Aminoácido Oxidase/metabolismo , Ácido D-Aspártico/metabolismo , Dieta , Gliceraldeído/química , Gliceraldeído/metabolismo , Humanos , Plantas/química , Plantas/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Serina/metabolismo , Estereoisomerismo
3.
Appl Microbiol Biotechnol ; 101(15): 6137-6153, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28643181

RESUMO

Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H+ due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).


Assuntos
Amidas/metabolismo , Parede Celular/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Nisina/biossíntese , Amidas/química , Parede Celular/química , Fermentação , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Nisina/genética , Peptidoglicano/metabolismo
4.
Biochim Biophys Acta ; 1854(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450505

RESUMO

Crystallin stability and subunit-subunit interaction are essential for eye lens transparency. There are three types of crystallins in lens, designated as α-, ß-, and γ-crystallins. Alpha-crystallin is a hetero-polymer of about 800kDa, consisting of 35-40 subunits of two different αA- and αB-subunits, each of 20kDa. The ß/γ-crystallin superfamily comprises oligomeric ß-crystallin (2-6 subunits) and monomeric γ-crystallin. Since lens proteins have very long half-lives, they undergo numerous post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation, which may decrease crystallin solubility and ultimately cause cataract formation. Racemization and isomerization of aspartyl (Asp) residues have been detected only in polymeric α- and oligomeric ß-crystallin, while the situation in monomeric γ-crystallin has not been studied. Here, we investigated the racemization and isomerization of Asp in the γ-crystallin fraction of elderly donors. The results show that Asp residues of γS-, γD- and γC-crystallins were not racemized and isomerized. However, strikingly, we found that a portion of αB-crystallin and ßA3-crystallin moved to the lower molecular weight fraction which is the same size of γ-crystallin. In those fractions, Asp-96 of αB-crystallin and Asp-37 of ßA3-crystallin were highly inverted, which do not occur in the native lens higher molecular weight fraction. Our results indicate the possibility that the inversion of Asp residues may induce dissociation of αB- and ßA3-crystallins from the polymeric and oligomeric states. This is the first report that stereoinversion of amino acids disturbs lens protein assembly in aged human lens.


Assuntos
Ácido D-Aspártico/química , Cristalino/química , Cadeia B de alfa-Cristalina/química , Cadeia A de beta-Cristalina/química , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Catarata/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Ácido D-Aspártico/metabolismo , Humanos , Cristalino/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Solubilidade , Estereoisomerismo , Tripsina/metabolismo , Água/química , Cadeia B de alfa-Cristalina/metabolismo , Cadeia A de beta-Cristalina/metabolismo , gama-Cristalinas/química , gama-Cristalinas/metabolismo
5.
Amino Acids ; 48(2): 387-402, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26352274

RESUMO

Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.


Assuntos
Isomerases de Aminoácido/genética , Ácido Aspártico/metabolismo , Invertebrados/enzimologia , Racemases e Epimerases/genética , Serina/metabolismo , Isomerases de Aminoácido/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Invertebrados/genética , Filogenia , Fosfato de Piridoxal/metabolismo , Racemases e Epimerases/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
6.
Biomolecules ; 11(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34827714

RESUMO

In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.


Assuntos
Peptídeos , Aminoácidos , Estereoisomerismo
7.
Food Chem (Oxf) ; 3: 100048, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415658

RESUMO

The processing of dry-cured ham results in the generation of small peptides by the action of endogenous enzymes on muscle proteins. Common proteomic workflows involve previous separation techniques based on liquid chromatography which are expensive and time-consuming. In this study, a convenient proteomic approach based on MALDI-ToF is proposed for the first time for the detection of dipeptides in Spanish dry-cured ham. Dipeptides AH, AL, DD, EV, and VF were identified in hams of 18 and 24 months of dry-curing. This work provides insights on the efficiency of a new peptidomic workflow for the short peptide identification from a complex food matrix and permits to evaluate the sample in terms of the presence of taste-related and bioactive dipeptides.

8.
Biomolecules ; 10(5)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353957

RESUMO

Cell differentiation during spermatogenesis requires a proper actin dynamic, regulated by several proteins, including formins. Disheveled-Associated-Activator of Morphogenesis1 (DAAM1) belongs to the formins and promotes actin polymerization. Our results showed that oral D-Aspartate (D-Asp) administration, an excitatory amino acid, increased DAAM1 protein levels in germ cells cytoplasm of rat testis. Interestingly, after the treatment, DAAM1 also localized in rat spermatogonia (SPG) and mouse GC-1 cells nuclei. We provided bioinformatic evidence that DAAM1 sequence has two predicted NLS, supporting its nuclear localization. The data also suggested a role of D-Asp in promoting DAAM1 shuttling to the nuclear compartment of those proliferative cells. In addition, the proliferative action induced by D-Asp is confirmed by the increased levels of PCNA, a protein expressed in the nucleus of cells in the S phase and p-H3, a histone crucial for chromatin condensation during mitosis and meiosis. In conclusion, we demonstrated, for the first time, an increased DAAM1 protein levels following D-Asp treatment in rat testis and also its localization in the nucleus of rat SPG and in mouse GC-1 cells. Our results suggest an assumed role for this formin as a regulator of actin dynamics in both cytoplasm and nuclei of the germ cells.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Ácido D-Aspártico/farmacologia , Espermatogônias/metabolismo , Testículo/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Ácido D-Aspártico/metabolismo , Masculino , Sinais de Localização Nuclear , Ratos , Ratos Wistar , Espermatogônias/efeitos dos fármacos , Testículo/citologia , Regulação para Cima
9.
Artigo em Inglês | MEDLINE | ID: mdl-30902582

RESUMO

Previously, we demonstrated that the animal aspartate racemase (AspR) gene has evolved from the serine racemase (SerR) gene by acquisition of three consecutive serine residues (Ser155-Ser156-Ser157) involved in the strong AspR activity, and this event has occurred independently and frequently during animal evolution. In the present study, we cloned and characterized two mammalian SerR homologous genes from the hemichordate acorn worm (Saccoglossus kowalevskii). The enzymes have been identified as an AspR and an aspartate/glutamate racemase (Asp/GluR) on the basis of their kinetic parameters. The S. kowalevskii Asp/GluR shows comparable substrate affinity and high catalytic efficiency (kcat/Km) for both aspartate and glutamate and is the first reported enzyme from animals that can synthesize d-glutamate. Amino acid sequence alignment analysis and site-directed mutagenesis studies have revealed that the amino acid residue at position 156, which is serine in AspR and alanine in Asp/GluR, is associated with binding and recognition of glutamate and aspartate. Phylogenetic analysis suggests that the S. kowalevskii AspR gene has evolved from the SerR gene after the divergence of hemichordata and vertebrate lineages by acquisition of the three serine residues at position 155 to 157 as in the case of other animal AspR genes. Furthermore, the S. kowalevskii Asp/GluR gene is the result of AspR gene duplication and several amino acid substitutions including that of the 156th serine residue with alanine. The fact that SerR has acquired substrate specificity towards aspartate or glutamate raises the possibility that synthesis of other d-amino acids is carried out by enzymes evolved from SerR.


Assuntos
Isomerases de Aminoácido , Cordados não Vertebrados , Filogenia , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico/economia , Ácido Aspártico/metabolismo , Cordados não Vertebrados/enzimologia , Cordados não Vertebrados/genética , Clonagem Molecular
10.
FEBS J ; 283(5): 850-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700637

RESUMO

Aged cataract formation is caused by the accumulative precipitation of lens proteins incorporating diverse post-translational modifications. α-Crystallin, a major structural and functional lens protein, consists of a large polymeric structure that is dissociated and insolubilized with accumulative post-translational modifications. One such modification, isomerization of Asp, was recently identified in αB-crystallin monomers derived from aged lens. However, the distributions of Asp isomers in each lens fraction remain unknown. Here, α-crystallin fractions from aged lens were separated into heteropolymeric and monomeric forms to determine the Asp isomerization ratios in each fraction. Lens of four different ages were homogenized and centrifuged, and the soluble fraction was applied to size-exclusion chromatography. The heteropolymeric α-crystallin and monomeric crystallin fractions were obtained and concentrated. After trypsin digestion, each fraction was independently applied to liquid chromatography equipped with mass spectrometry to extract α-crystallin-derived peptides containing Asp isomers. The results showed that Asp58, Asp84 and Asp151 of αA-crystallin were highly isomerized in the monomeric fraction, but not isomerized to the same level in the heteropolymeric fraction. Each type of Asp isomerization increased in an age-dependent manner, was site-specific and was similar to previous results from lens water-insoluble fractions. These results imply that isomerization of Asp residues leads to dissociation of αA-crystallin from the heteropolymeric state and induces insolubilization in aged lens. Taken together, our findings suggest that isomerization of Asp might disrupt the higher order polymeric state of α-crystallin, resulting in decreased solubility and function, ultimately contributing to lens protein impairment and cataract formation with aging.


Assuntos
Envelhecimento , Ácido Aspártico/química , Cadeia A de alfa-Cristalina/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Catarata , Cromatografia , Cromatografia Líquida , Humanos , Isomerismo , Cristalino/química , Pessoa de Meia-Idade , Polímeros/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Tripsina/química
11.
J Chromatogr A ; 1467: 318-325, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27435686

RESUMO

A method for the determination of D-Aspartic acid (D-Asp) and its D/L ratio in peptides and proteins has been developed. This method was carried out with good separation of the D/L chiral peptide pairs by combination of a chiral derivatization and an ADME column separation. Furthermore, a cationic derivatization reagent, DBD-Py-NCS, increased the sensitivity of the ESI-MS/MS detection. To confirm the comprehensive peptide analysis, synthesized α-Crystallin tryptic peptides, which included D-Asp residues, were analyzed. The 5 pairs of D/L-Asp that included peptide diastereomers were well separated. Their peak resolutions were more than 1.5 and the results were reproducible (RSD<0.05, n=5). As an application of this method, we analyzed the α-Crystallin standard and UV irradiated α-Crystallin. After trypsin digestion and DBD-Py-NCS derivatization, the tryptic peptide derivatives were applied to LC-MS/MS. Based on the results of peptide sequence identification, almost all the tryptic peptides of the αA- and αB-Crystallin homologous subunits of α-Crystallin were detected as DBD-Py NCS derivatives. However, there was no D-Asp residue in the standard proteins. In the case of the UV irradiated α-Crystallin, Asp76 and Asp84 in the αA-Crystallin and Asp96 in αB-Crystallin were racemized to D-Asp. These results show that this proposed chiral peptide LC-MS/MS method using chiral derivatization provides a rapid and sensitive analysis for post translational Asp racemization sites in aging proteins.


Assuntos
Cristalinas/química , Ácido D-Aspártico/análise , Cromatografia Líquida , Ácido D-Aspártico/química , Indicadores e Reagentes , Isotiocianatos/química , Oxidiazóis/química , Peptídeos/química , Estereoisomerismo , Espectrometria de Massas em Tandem
12.
Nutr Res ; 33(10): 803-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24074738

RESUMO

It was hypothesized that D-aspartic acid (D-ASP) supplementation would not increase endogenous testosterone levels or improve muscular performance associated with resistance training. Therefore, body composition, muscle strength, and serum hormone levels associated with the hypothalamo-pituitary-gonadal axis were studied after 28 days of resistance training and D-ASP supplementation. Resistance-trained men resistance trained 4 times/wk for 28 days while orally ingesting either 3 g of placebo or 3 g of D-ASP. Data were analyzed with 2 × 2 analysis of variance (P < .05). Before and after resistance training and supplementation, body composition and muscle strength, serum gonadal hormones, and serum D-ASP and d-aspartate oxidase (DDO) were determined. Body composition and muscle strength were significantly increased in both groups in response to resistance training (P < .05) but not different from one another (P > .05). Total and free testosterone, luteinizing hormone, gonadotropin-releasing hormone, and estradiol were unchanged with resistance training and D-ASP supplementation (P > .05). For serum D-ASP and DDO, D-ASP resulted in a slight increase compared with baseline levels (P > .05). For the D-ASP group, the levels of serum DDO were significantly increased compared with placebo (P < .05). The gonadal hormones were unaffected by 28 days of D-ASP supplementation and not associated with the observed increases in muscle strength and mass. Therefore, at the dose provided, D-ASP supplementation is ineffective in up-regulating the activity of the hypothalamo-pituitary-gonadal axis and has no anabolic or ergogenic effects in skeletal muscle.


Assuntos
Composição Corporal/efeitos dos fármacos , Ácido D-Aspártico/farmacologia , Suplementos Nutricionais , Hormônios/sangue , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Adolescente , Adulto , Análise de Variância , Estradiol/sangue , Hormônio Liberador de Gonadotropina/sangue , Humanos , Hormônio Luteinizante/sangue , Masculino , Músculo Esquelético/fisiologia , Testosterona/sangue , Adulto Jovem
13.
Neuroscience ; 254: 335-46, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24095695

RESUMO

Astrocytes are plastic cells that play key roles in brain physiology and pathology, including via their glutamate transporters, excitatory amino acid transporter (EAAT)1 and EAAT2, maintaining low extracellular glutamate concentrations and protecting against excitotoxic neuronal injury. Alterations in cell surface expression of EAATs and astrocytic cytoskeleton are important for regulating transporter activity. This study employed the actions of rottlerin, to interrogate the regulation of EAAT activity, expression and localization, and interfaces with Na(+)/K(+)-ATPase and astrocytic morphology. EAAT activity and expression were determined in primary cultures of mouse astrocytes in the presence of and after rottlerin removal, with or without trafficking inhibitors, using uptake ([(3)H]d-aspartate, (86)Rb(+)) and molecular analyses. Astrocytic morphology and EAAT localization were investigated using Western blotting and immunocytochemistry, in concert with image analysis of glial fibrillary acidic protein, F-actin and EAAT1/2. Rottlerin induced a time-dependent inhibition of glutamate transport (Vmax). Rapid changes in cytoskeletal arrangement were observed and immunoblotting revealed increases in EAAT2 total and cell surface expression, despite reduced EAAT activity. Rottlerin-induced inhibition was reversible and its rate was increased by monensin co-treatment. Rottlerin inhibited, while monensin stimulated Na(+)/K(+)-ATPase. Removal of rottlerin rapidly elevated Na(+)/K(+)-ATPase activity beyond control levels, while co-treatment with monensin failed to stimulate the Na(+)/K(+)-ATPase. These data reveal inhibition of EAAT activity by rottlerin is not associated with loss of EAATs at the cell surface, but rather linked to cytoskeletal rearrangement, and inhibition of the Na(+)/K(+)-ATPase. Rapid recovery of Na(+)/K(+)-ATPase activity, and subsequent restoration of glutamate uptake indicates that astrocytic morphology and EAAT activity are co-regulated by a tightly coupled, homeostatic relationship between l-glutamate uptake, the electrochemical gradient and the activity of the Na(+)/K(+)-ATPase.


Assuntos
Acetofenonas/farmacologia , Astrócitos/metabolismo , Benzopiranos/farmacologia , Citoesqueleto/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
14.
Neuropharmacology ; 75: 337-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23958452

RESUMO

We investigated the CCL5-glutamate interaction in the cortex and in the spinal cord from mice with Experimental Autoimmune Encephalomyelitis (EAE) at 13 and 21/30 days post immunization (d.p.i.), representing the onset and the peak of the disease, respectively. An early reduction of the KCl-evoked glutamate release was observed in cortical terminals from EAE mice at 13 d.p.i., persisting until 21/30 d.p.i. A concomitant reduction of the depolarization-evoked cyclic adenosine monophosphate (cAMP), but not of the inositol 1,4,5-trisphosphate (IP3) cortical production also occurred at 13 d.p.i, that still was detectable at the acute stage of disease (21 dp.i.). Inasmuch, the CCL5-mediated inhibition of glutamate exocytosis observed in control mice turned to facilitation in EAE mouse cortex at 13 d.p.i., then becoming undetectable at 21/30 d.p.i. Differently, glutamate exocytosis, as well as IP3 and cAMP productions were unaltered in spinal cord synaptosomes from EAE mice at 13 d.p.i., but significantly increased at 21/30 d.p.i., while the presynaptic CCL5-mediated facilitation of glutamate exocytosis observed in control mice remained unchanged. In both CNS regions, the presynaptic defects were parallelled by increased CCL5 availability. Inasmuch, the presynaptic defects so far described in EAE mice were reminiscent of the effects acute CCL5 exerts in control conditions. Based on these observations we propose that increased CCL5 bioavailability could have a role in determining the abovedescribed impaired presynaptic impairments in both CNS regions. These presynaptic defects could be relevant to the onset of early cognitive impairments and acute neuroinflammation and demyelinating processes observed in multiple sclerosis patients.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Quimiocina CCL5/metabolismo , Encefalomielite Autoimune Experimental/patologia , Ácido Glutâmico/metabolismo , Sinaptossomos/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Colforsina/farmacologia , Ácido D-Aspártico/farmacocinética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/induzido quimicamente , Exocitose/efeitos dos fármacos , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Cloreto de Potássio/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Fatores de Tempo , Trítio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA