Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Med Genet A ; 170(7): 1772-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27108886

RESUMO

Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array-Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR-associated cerebellar hypoplasia (VLDLR-CH) is characterized by non-progressive congenital ataxia and moderate-to-profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array-CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Receptores de LDL/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Cerebelo/anormalidades , Cerebelo/fisiopatologia , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/fisiopatologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular , Microcefalia/genética , Microcefalia/fisiopatologia , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Linhagem , Fenótipo
2.
Int J Pediatr Otorhinolaryngol ; 171: 111626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329699

RESUMO

BACKGROUND: Microtia is a congenital malformation of the out ear, occurring either as an isolated defect or part of a specific pattern of multiple congenital anomalies. The etiology of microtia is poorly understood. Four patients with microtia and lung hypoplasia were reported by our team in a previous article. The purpose of this study was to identify the underlying genetic basis, mainly focusing on de novo copy number variations (CNVs) embedded in the noncoding region, in the four subjects. METHODS: DNA samples from all four patients and their unaffected parents were extracted for whole-genome sequencing on the Illumina platform. All variants were obtained through data quality control, variant calling and bioinformatics analysis. De novo strategy was used to prioritize the variants, and candidate variants were verified by PCR amplification combined with Sanger sequencing and visual inspection of bam file. RESULTS: Whole gene sequencing following bioinformatics analysis showed no potential de novo pathogenic variants in the coding region. Nonetheless, four de novo CNVs in the non-coding region, intronic or intergenic, were identified in each subject, ranging in size from 10 Kb to 12.5 Kb, and all are deletions. Case 1 had a de novo deletion of 10 Kb on chromosome10q22.3, located in the intronic region of the LRMDA gene. The other three cases all had a de novo deletion in intergenic regions, located on chromosome 20q11.21, 7q31.1 and 13q12.13, respectively. CONCLUSIONS: This study reported multiple long-lived cases of microtia with pulmonary hypoplasia and provided genome-wide genetic analysis focusing on de novo mutations. Whether the de novo CNVs identified are responsible for the rare phenotypes remains an open question. However, the results of our study provided a new perspective that the unsolved etiology of microtia might involve in non-coding sequences, which have long been ignored.


Assuntos
Microtia Congênita , Anormalidades do Sistema Respiratório , Humanos , Variações do Número de Cópias de DNA , Pulmão , Sequenciamento Completo do Genoma
3.
Genome Med ; 14(1): 122, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303224

RESUMO

BACKGROUND: The multiple de novo copy number variant (MdnCNV) phenotype is described by having four or more constitutional de novo CNVs (dnCNVs) arising independently throughout the human genome within one generation. It is a rare peri-zygotic mutational event, previously reported to be seen once in every 12,000 individuals referred for genome-wide chromosomal microarray analysis due to congenital abnormalities. These rare families provide a unique opportunity to understand the genetic factors of peri-zygotic genome instability and the impact of dnCNV on human diseases. METHODS: Chromosomal microarray analysis (CMA), array-based comparative genomic hybridization, short- and long-read genome sequencing (GS) were performed on the newly identified MdnCNV family to identify de novo mutations including dnCNVs, de novo single-nucleotide variants (dnSNVs), and indels. Short-read GS was performed on four previously published MdnCNV families for dnSNV analysis. Trio-based rare variant analysis was performed on the newly identified individual and four previously published MdnCNV families to identify potential genetic etiologies contributing to the peri-zygotic genomic instability. Lin semantic similarity scores informed quantitative human phenotype ontology analysis on three MdnCNV families to identify gene(s) driving or contributing to the clinical phenotype. RESULTS: In the newly identified MdnCNV case, we revealed eight de novo tandem duplications, each ~ 1 Mb, with microhomology at 6/8 breakpoint junctions. Enrichment of de novo single-nucleotide variants (SNV; 6/79) and de novo indels (1/12) was found within 4 Mb of the dnCNV genomic regions. An elevated post-zygotic SNV mutation rate was observed in MdnCNV families. Maternal rare variant analyses identified three genes in distinct families that may contribute to the MdnCNV phenomenon. Phenotype analysis suggests that gene(s) within dnCNV regions contribute to the observed proband phenotype in 3/3 cases. CNVs in two cases, a contiguous gene duplication encompassing PMP22 and RAI1 and another duplication affecting NSD1 and SMARCC2, contribute to the clinically observed phenotypic manifestations. CONCLUSIONS: Characteristic features of dnCNVs reported here are consistent with a microhomology-mediated break-induced replication (MMBIR)-driven mechanism during the peri-zygotic period. Maternal genetic variants in DNA repair genes potentially contribute to peri-zygotic genomic instability. Variable phenotypic features were observed across a cohort of three MdnCNV probands, and computational quantitative phenotyping revealed that two out of three had evidence for the contribution of more than one genetic locus to the proband's phenotype supporting the hypothesis of de novo multilocus pathogenic variation (MPV) in those families.


Assuntos
Variações do Número de Cópias de DNA , Instabilidade Genômica , Humanos , Hibridização Genômica Comparativa , Mutação , DNA , Nucleotídeos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
World J Biol Psychiatry ; 20(2): 126-136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29069978

RESUMO

OBJECTIVES: Variants appearing de novo in genes regulating key neurodevelopmental processes and/or in non-coding cis-regulatory elements (CREs), as enhancers, may increase the risk for schizophrenia. However, CREs involvement in schizophrenia needs to be explored more deeply. METHODS: We investigated de novo copy-number variations (CNVs) in the whole-genomic DNA obtained from 46 family trios of schizophrenia probands by using the Enhancer Chip, a customised array CGH able to investigate the whole genome with a 300-kb resolution, specific disease loci at a ten-fold higher resolution, and which was highly enriched in probes in more than 1,250 enhancer elements selected from Vista Enhancer Browser. RESULTS: In seven patients, we found de novo CNVs, two of which overlapped VISTA enhancer elements. De novo CNVs encompass genes (CNTNAP2, MAGI1, TSPAN7 and MET) involved in brain development, while that involving the enhancer element hs1043, also includes ZIC1, which plays a role in neural development and is responsible of behavioural abnormalities in Zic mutant mice. CONCLUSIONS: These findings provide further evidence for the involvement of de novo CNVs in the pathogenesis of schizophrenia and suggest that CNVs affecting regulatory enhancer elements could contribute to the genetic vulnerability to the disorder.


Assuntos
Variações do Número de Cópias de DNA/genética , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença/genética , Esquizofrenia/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
5.
Front Genet ; 4: 185, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24065985

RESUMO

The copy number variation (CNV) is a type of genetic variation in the genome. It is measured based on signal intensity measures and can be assessed repeatedly to reduce the uncertainty in PCR-based typing. Studies have shown that CNVs may lead to phenotypic variation and modification of disease expression. Various challenges exist, however, in the exploration of CNV-disease association. Here we construct latent variables to infer the discrete CNV values and to estimate the probability of mutations. In addition, we propose to pool rare variants to increase the statistical power and we conduct family studies to mitigate the computational burden in determining the composition of CNVs on each chromosome. To explore in a stochastic sense the association between the collapsing CNV variants and disease status, we utilize a Bayesian hierarchical model incorporating the mutation parameters. This model assigns integers in a probabilistic sense to the quantitatively measured copy numbers, and is able to test simultaneously the association for all variants of interest in a regression framework. This integrative model can account for the uncertainty in copy number assignment and differentiate if the variation was de novo or inherited on the basis of posterior probabilities. For family studies, this model can accommodate the dependence within family members and among repeated CNV data. Moreover, the Mendelian rule can be assumed under this model and yet the genetic variation, including de novo and inherited variation, can still be included and quantified directly for each individual. Finally, simulation studies show that this model has high true positive and low false positive rates in the detection of de novo mutation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA