Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nano Lett ; 24(22): 6601-6609, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787739

RESUMO

Lead-halide perovskite nanocrystals (NCs) are promising for fabricating deep-blue (<460 nm) light-emitting diodes (LEDs), but their development is plagued by low electroluminescent performance and lead toxicity. Herein, the synthesis of 12 kinds of highly luminescent and eco-friendly deep-blue europium (Eu2+)-doped alkali-metal halides (AX:Eu2+; A = Na+, K+, Rb+, Cs+; X = Cl-, Br-, I-) NCs is reported. Through adjustment of the coordination environment, efficient deep-blue emission from Eu-5d → Eu-4f transitions is realized. The representative CsBr:Eu2+ NCs exhibit a high photoluminescence quantum yield of 91.1% at 441 nm with a color coordinate at (0.158, 0.023) matching with the Rec. 2020 blue specification. Electrically driven deep-blue LEDs from CsBr:Eu2+ NCs are demonstrated, achieving a record external quantum efficiency of 3.15% and half-lifetime of ∼1 h, surpassing the reported metal-halide deep-blue NCs-based LEDs. Importantly, large-area LEDs with an emitting area of 12.25 cm2 are realized with uniform emission, representing a milestone toward commercial display applications.

2.
Small ; 20(5): e2305191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752759

RESUMO

Metal halide perovskite colloidal quantum wells (CQWs) hold great promise for modern photonics and optoelectronics. However, current studies focus on Ruddlesden-Popper (R-P) phase perovskite CQWs that contain bilayers of monovalent long-chain alkylamomoniums between the separated perovskite octahedra layers. The bilayers are packed back-to-back via weak van der Waals interaction, resulting in inferior charge carrier transport and easier decomposition of perovskite. This report first creates a new type of perovskite colloidal multiple QWs (CMQWs) in the form of Dion-Jacobson (D-J) structure by introducing an asymmetric diammonium cation. Furthermore, the phase distribution is optimized by the synergistic effect of valeric acid and zwitterionic lecithin, finally achieving pure deep-blue emission at 435 nm with narrow full width at half maximum. The diammonium layer in D-J perovskite CMQWs features extremely short width of only ≈0.6 nm, thereby contributing to more effective charge carrier transport and higher stability. Through the continuous photoluminescence (PL) measurement and corresponding theoretical calculation, the higher stability of D-J perovskite CMQWs than that of R-P structural CMQWs is confirmed. This work reveals the inherent superior stability of D-J structural CMQWs, which opens a new direction for fabricating stable perovskite optoelectronics.

3.
Angew Chem Int Ed Engl ; 63(22): e202403739, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38565430

RESUMO

Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458 nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.

4.
Angew Chem Int Ed Engl ; : e202412915, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083335

RESUMO

The device performance of deep-blue perovskite light-emitting diodes (PeLEDs) is primarily constrained by low external quantum efficiency (EQE) especially poor operational stability. Herein, we develop a facile strategy to improve deep-blue emission through rational interface engineering. We innovatively reported the novel electron transport material, 4,6-Tris(4-(diphenylphosphoryl)phenyl)-1,3,5-triazine (P-POT2T), and utilized a sequential wet-dry deposition method to form homogenic gradient interface between electron transport layer (ETL) and perovskite surface. Unlike previous reports that achieved carrier injection balance by inserting new interlayers, our strategy not only passivated uncoordinated Pb in the perovskite via P=O functional groups but also reduced interfacial carrier recombination without introducing new interfaces. Additionally, this strategy enhanced the interface contact between the perovskite and ETL, significantly boosting device stability. Consequently, the fabricated deep-blue PeLEDs delivered an external quantum efficiency (EQE) exceeding 5% (@ 460 nm) with an exceptional halftime extended to 31.3 minutes. This straightforward approach offers a new strategy to realize highly efficient especially stable PeLEDs.

5.
Angew Chem Int Ed Engl ; : e202414960, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39282722

RESUMO

Organic fluorophores with tunable π-conjugated paths have attracted considerable attention owing to their diverse properties and promising applications. Herein, we present a tailored butterfly like molecule, 2,2'-(2,5-bis (2,2-diphenylvinyl)-1,4-phenylene)dinaphtha-lene (BDVPN), which exhibits diverse photophysical features in its two polymorphs. The BP phase crystal, with its "aligned wings" conformation, possesses emissive characteristics that are nearly identical to those in dilute solutions. In contrast, the BN phase crystal, which adopts an "orthogonal wings" conformation, exhibits an unusual hypsochromic-shifted emission compared to its dilute solution counterparts. This intriguing hypsochromic-shifted emission originates from the reduction in the effective conjugated length of the molecular skeleton. Notably, BN phase crystals also exhibit exceptional optical performance, featuring high-efficiency emission (76.6%), low-loss optical waveguides (0.571 dB mm-1), deep-blue amplified spontaneous emission (ASE) with a narrow full width at half maximum (FWHM: 6.4 nm), and a unique 200 nm bathochromic shift of piezochromic luminescence.

6.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375387

RESUMO

The development of efficient deep-blue emitters with thermally activated delayed fluorescence (TADF) properties is a highly significant but challenging task in the field of organic light-emitting diode (OLED) applications. Herein, we report the design and synthesis of two new 4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine (TB)-derived TADF emitters, TB-BP-DMAC and TB-DMAC, which feature distinct benzophenone (BP)-derived acceptors but share the same dimethylacridin (DMAC) donors. Our comparative study reveals that the amide acceptor in TB-DMAC exhibits a significantly weaker electron-withdrawing ability in comparison to that of the typical benzophenone acceptor employed in TB-BP-DMAC. This disparity not only causes a noticeable blue shift in the emission from green to deep blue but also enhances the emission efficiency and the reverse intersystem crossing (RISC) process. As a result, TB-DMAC emits efficient deep-blue delay fluorescence with a photoluminescence quantum yield (PLQY) of 50.4% and a short lifetime of 2.28 µs in doped film. The doped and non-doped OLEDs based on TB-DMAC display efficient deep-blue electroluminescence with spectral peaks at 449 and 453 nm and maximum external quantum efficiencies (EQEs) of 6.1% and 5.7%, respectively. These findings indicate that substituted amide acceptors are a viable option for the design of high-performance deep-blue TADF materials.

7.
Angew Chem Int Ed Engl ; 62(45): e202311317, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37735098

RESUMO

Solution-processed quantum dot (QD) based blue emitters are of paramount importance in the field of optoelectronics. Despite large research efforts, examples of efficient deep blue/near UV-emitting QDs remain rare due to lack of luminescent wide band gap materials and high defect densities in the existing ones. Here, we introduce a novel type of QDs based on heavy metal free gallium sulfide (Ga2 S3 ) and their core/shell heterostructures Ga2 S3 /ZnS as well as Ga2 S3 /ZnS/Al2 O3 . The photoluminescence (PL) properties of core Ga2 S3 QDs exhibit various decay pathways due to intrinsic defects, resulting in a broad overall PL spectrum. We show that the overgrowth of the Ga2 S3 core QDs with a ZnS shell results in the suppression of the intrinsic defect-mediated states leading to efficient deep-blue emission at 400 nm. Passivation of the core/shell structure with amorphous alumina yields a further enhancement of the PL quantum yield approaching 50 % and leads to an excellent optical and colloidal stability. Finally, we develop a strategy for the aqueous phase transfer of the obtained QDs retaining 80 % of the initial fluorescence intensity.

8.
Angew Chem Int Ed Engl ; 62(8): e202215522, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36480790

RESUMO

We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λPL of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, ΦPL of 71 %, and a delayed lifetime, τd of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQEmax ) of 8.5 % at Commission Internationale de l'Éclairage (CIE) coordinates of (0.173, 0.055). The EQEmax values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).

9.
Small ; 18(22): e2107161, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527340

RESUMO

All-inorganic lead-free Cs3 Cu2 I5  perovskite-derivant quantum dots (QDs) have attracted tremendous attention due to their nontoxicity and unique optoelectronic properties. However, the traditional hot-injection method requires high temperatures and multiple ligands to confine the growth of QDs. Herein, a strategy is reported to spontaneously synthesize ultrasmall Cs3 Cu2 I5  QDs within metal-organic-frameworks (MOFs) MOF-74 at room temperature (RT) with an average diameter of 4.33 nm. The obtained Cs3 Cu2 I5  QDs exhibit an evident deep-blue emission with Commission Internationale de L'Eclairage coordinates of (0.17, 0.07), owing to the strong quantum confinement effect. Due to the protection of MOF-74, the Cs3 Cu2 I5  QDs demonstrate superior stability, and the photoluminescence quantum yield retains 89% of the initial value after the storage of 1440 h under the environment with relative humidity exceeding 70%. Besides, triplet-triplet annihilation upconversion emission is observed within the composite of Cs3 Cu2 I5 @MOF-74, which brings out apparent temperature-dependent photoluminescence. This study reveals a facile method for fabricating ultrasmall lead-free perovskite-derivant QDs at RT without multiple ligands. Besides, the temperature-dependent photoluminescence of Cs3 Cu2 I5 @MOF-74 may open up a new way to develop the applications of temperature sensors or other related optoelectronic devices.

10.
Nanotechnology ; 33(44)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760041

RESUMO

Reaching emissive nanomaterials at short wavelengths with a high quantum efficiency (QE) is an attractive task for researchers. This is more demanding in carbon dots (CDs) with diverse applications that usually emit photons at wavelengths around 450-620 nm. In this study, deep blue-emissive doped-CDs (d-CDs) with high photoluminescence (PL) QE up to 62% and excitation-independent properties were prepared via a short-time microwave irradiation method. The prepared CDs showed simultaneous amorphous and crystalline features, with average sizes of 4.75 nm and bright emission color located at 422 nm. It was found that the presence of sulfur-related dopant levels plays a key role in emission properties in such a way that the PL signal drops significantly in the absence of N-acetyl-l-cysteine (NAC) as a dopant source. On the other hand, the trisodium citrate dihydrate (TSC) was selected as a carbon source to form the main carbon skeleton without it no emission was recorded. Monoexponential-fitted recombination trend with an average lifetime of about 10 ns also confirmed excellent PL emission properties with uniform energy levels and minimized defect-contributing recombinations. The practical use of the as-prepared N, S-doped CDs was assessed in fingerprint detection indicating a bright and clear scheme for both core and termination regions of the fingerprint. Simplicity, cost-effectiveness, high-product yield, low toxicity, along with high/stable PL quantum efficiency in deep-blue wavelengths, and demonstrated ability for fingerprint purposes, support the prospective application of these dual doped-CDs for sensing and bioimaging applications.

11.
Angew Chem Int Ed Engl ; 61(40): e202210322, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35945694

RESUMO

The lagging development of deep-blue perovskite light-emitting diodes (PeLEDs) heavily impedes their practical applications in full-color display due to the absence of spectrally stable emitters and the mismatch of carrier injection capacity. Herein, we report highly efficient deep-blue PeLEDs through a new chemical strategy that addresses the dilemma for simultaneously constant electroluminescence (EL) spectra and high-purify phase in reduced-dimensional perovskites. The success lies in the control of adsorption-energy differences between phenylbutylamine (PBA) and ethylamine (EA) interacting with perovskites, which facilitates narrow n-value distribution. This approach leads to an increased exciton binding energy and enhanced surface potential, hence improving radiative recombination. As a result, an external quantum efficiency of 4.62 % is achieved in PeLEDs with a stable EL peak at 457 nm, demonstrating the best reported result for deep-blue PeLEDs so far.

12.
Angew Chem Int Ed Engl ; 61(34): e202207289, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686675

RESUMO

We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.


Assuntos
Corantes Fluorescentes , Luminescência , Espectroscopia de Ressonância Magnética
13.
Small ; 17(34): e2102060, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34288427

RESUMO

Inspired by the 2D bilayer lipid membranes in nature, a unique supramolecular "push-pull" synergetic strategy toward self-assembled 2D organic crystals (2DOCs) is proposed in this work, which can effectively suppress the interlayer 3D stacking while maintaining the assembly of the intralayer for 2D growth. For this purpose, a model molecule PF-Py consisting of a planar supramolecular "attractor" and a nonplanar steric "repellor" is designed for the solution self-assembly process. Well-defined 2DOCs including crystal nanosheets and millimeter-sized crystal films with layered amphiphile-like packing are obtained, which is analogical to the cell membranes of living organisms. Thanks to the special packing mode, the 2DOCs have fascinating integrated photoelectric property, with high mobility of 7.8 × 10-2 cm2 V-1 s-1 , high crystalline state photoluminescence quantum yield of 55%, and superior deep-blue laser characteristics with a low threshold of 5.51 µJ cm-2 . This supramolecular synergetic strategy advances the design of 2D organic semiconductor crystals for high performance optoelectronics.


Assuntos
Semicondutores
14.
Angew Chem Int Ed Engl ; 60(7): 3556-3560, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128846

RESUMO

The structural motif of platinum(II) complexes bearing cyclometalating N-heterocyclic carbene ligands can be used to design deep-blue phosphors for application in organic light-emitting diodes. However, the photophysical properties of the resulting molecules are also highly dependent on the auxiliary ligand. These often allow molecular deformations in the excited state which contribute to non-radiative decay processes that diminish the attainable quantum yield. The use of bis(pyrazolyl)borate-based auxiliary ligands enforces a high molecular rigidity due to their unique geometry. The steric crowding in the coordination sphere inhibits deformation processes and results in highly efficient deep-blue platinum(II) emitters with CIE coordinates below (0.15; 0.15).

15.
ACS Nano ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417673

RESUMO

Europium halide perovskites are promising candidates for environmentally benign blue-light emitters with their narrow emission line width. However, the development of high-photoluminescence quantum yield (PLQY) colloidal europium halide perovskite nanocrystals (PNCs) is hindered by limited synthetic methods and elusive reaction mechanisms. Here, we provide an effective synthetic route for achieving high-PLQY deep-blue-emitting colloidal CsEuBr3 PNCs. Using two Br-organic ligand precursors, oleylammonium bromide (OLAMHBr) and trioctylphosphine dibromide (TOPBr2), we identified distinct phase evolution routes involving Eu2+:CsBr, Cs4EuBr6, and CsEuBr3. The OLAMHBr precursor initially promotes the formation of the Eu2+:CsBr phase, which reorganizes into the CsEuBr3 perovskite phase via proton transfer. In contrast, the TOPBr2 precursor induces the formation of core/shell Cs4EuBr6/CsBr PNCs, which subsequently transform into CsEuBr3 through nucleophilic addition. The TOPBr2 route exhibited enhanced CsEuBr3 phase homogeneity, resulting in a significantly higher PLQY (40.5%; full width at half-maximum (fwhm) = 24 at 430 nm), compared to the OLAMHBr route (16.5% at 418 nm). Notably, the phase-pure CsEuBr3 PNCs demonstrated a world-record PLQY among the reported blue-emitting lead-free PNCs that exhibit a narrow emission line width (fwhm <25 nm). This work highlights the significant role of organic ligands in the colloidal synthesis of CsEuBr3 PNCs and their potential as nontoxic, solution-processable blue-light emitters.

16.
Adv Mater ; 36(1): e2308314, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963185

RESUMO

Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.

17.
ACS Appl Mater Interfaces ; 16(38): 51201-51211, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39279143

RESUMO

Organic light-emitting diodes (OLEDs) have been extensively investigated in full-color displays and energy-saving lighting owing to their unique advantages. However, deep-blue OLEDs based on nondoped emitting layers with a satisfactory external quantum efficiency (EQE) are still rare for applications. In this work, six hot exciton materials, PPIM-12F, PPIM-22F, PPIM-13F, PPIM-23F, PPIM-1CN, and PPIM-2CN, are designed and synthesized via an isomer engineering design strategy and their photophysical properties and OLED performance are systematically investigated. These emitters all possess wide band gaps (3.53-3.69 eV), hybrid local and charge transfer (HLCT) characteristics, and good thermal stabilities. The C2 series compounds, PPIM-22F, PPIM-23F, and PPIM-2CN, all show redder emission peaks than the N1 series counterparts of PPIM-12F, PPIM-13F, and PPIM-1CN. In addition, the LUMO energy levels decrease consecutively in the sequence of PPIM-22F < PPIM-23F < PPIM-2CN and are all lower than their respective N1 series position isomers of PPIM-12F, PPIM-13F, and PPIM-1CN. The CV measurements indicate that such a design strategy renders the fine-tuning of LUMO energy levels, and the incorporation of electron acceptors at the extended C2 position of the PI unit is a better choice to improve the electron injection ability. Theoretical simulations indicate that they may harvest the triplet exciton through an upper-level reverse intersystem crossing process, which decreases the gathering of triplet excitons and allows the OLEDs to be fabricated by nondoping technology. Among them, PPIM-22F with a difluorobenzene substituent at the C2 position manifests the best performance in OLEDs, which exhibits the maximum EQE of 7.87% and Commission Internationale de lEclairage (CIE) coordinates of (0.16, 0.10). This work demonstrates an effective strategy for considerable improvement in device performance by a subtle change in the molecular structure through isomer engineering.

18.
ACS Appl Mater Interfaces ; 16(17): 22139-22146, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634537

RESUMO

During the synthesis of deep-blue perovskite quantum dots (PQDs), they generally emerge as a two-dimensional byproduct with poor yield and low photoluminescence quantum yield (PLQY) due to amine ligand enrichment-induced abundant surface defects. Herein, we provide a colloidal synthesis method to prepare deep-blue CsPbBr3 PQDs in a green nontoxic solvent via strategic Z-type ligand engineering. Z-type ligands of zinc octanoate enable the formation of robust coordination bonds with surface bromide ions of PQDs, maintaining acid-base equilibrium and reducing excess amine enrichment on the PQDs surface. Consequently, homogeneous and monodispersed PQDs with improved PLQY of 73% are successfully synthesized, achieving efficient deep-blue LEDs with a peak EQE of 5.46%, a maximum luminance of 847.6 cd/m2, and an operational half-lifetime of 14 min. The devices exhibit color coordinates of (0.137, 0.049), closely approximating the Rec. 2020 blue standard. Our work offers a potentially eco-friendly and viable route for realizing high-performance LEDs in the deep-blue region.

19.
Adv Mater ; : e2408118, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252676

RESUMO

Fast and efficient exciton utilization is a crucial solution and highly desirable for achieving high-performance blue organic light-emitting diodes (OLEDs). However, the rate and efficiency of exciton utilization in traditional OLEDs, which employ fully closed-shell materials as emitters, are inevitably limited by spin statistical limitations and transition prohibition. Herein, a new sensitization strategy, namely doublet-sensitized fluorescence (DSF), is proposed to realize high-performance deep-blue electroluminescence. In the DSF-OLED, a doublet-emitting cerium(III) complex, Ce-2, is utilized as sensitizer for multi-resonance thermally activated delayed fluorescence emitter ν-DABNA. Experimental results reveal that holes and electrons predominantly recombine on Ce-2 to form doublet excitons, which subsequently transfer energy to the singlet state of ν-DABNA via exceptionally fast (over 108 s-1) and efficient (≈100%) Förster resonance energy transfer for deep-blue emission. Due to the circumvention of spin-flip in the DSF mechanism, near-unit exciton utilization efficiency and remarkably short exciton residence time of 1.36 µs are achieved in the proof-of-concept deep-blue DSF-OLED, which achieves a Commission Internationale de l'Eclairage coordinate of (0.13, 0.14), a high external quantum efficiency of 30.0%, and small efficiency roll-off of 14.7% at a luminance of 1000 cd m-2. The DSF device exhibits significantly improved operational stability compared with unsensitized reference device.

20.
Adv Mater ; 36(31): e2313602, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38598847

RESUMO

Organic luminescent materials that exhibit thermally activated delayed fluorescence (TADF) can convert non-emissive triplet excitons into emissive singlet states through a reverse intersystem crossing (RISC) process. Therefore, they have tremendous potential for applications in organic light-emitting diodes (OLEDs). However, with the development of ultra-high definition 4K/8K display technologies, designing efficient deep-blue TADF materials to achieve the Commission Internationale de l'Éclairage (CIE) coordinates fulfilling BT.2020 remains a significant challenge. Here, an effective approach is proposed to design deep-blue TADF molecules based on hybrid long- and short-range charge-transfer by incorporation of multiple donor moieties into organoboron multiple resonance acceptors. The resulting TADF molecule exhibits deep-blue emission at 414 nm with a full width at half maximum (FWHM) of 29 nm, together with a thousand-fold increase in RISC rate. OLEDs based on the champion material achieve a record maximum external quantum efficiency (EQE) of 22.8% with CIE coordinates of (0.163, 0.046), approaching the coordinates of the BT.2020 blue standard. Moreover, TADF-assisted fluorescence devices employing the designed material as a sensitizer exhibit an exceptional EQE of 33.1%. This work thus provides a blueprint for future development of efficient deep-blue TADF emitters, representing an important milestone towards meeting the blue color gamut standard of BT.2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA