Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879014

RESUMO

Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.


Assuntos
Astrócitos , Proliferação de Células , Iodotironina Desiodinase Tipo II , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Astrócitos/metabolismo , Astrócitos/citologia , Linhagem Celular Tumoral , Células HEK293 , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
2.
Horm Behav ; 161: 105517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422864

RESUMO

We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.


Assuntos
Iodeto Peroxidase , Estações do Ano , Hormônios Tireóideos , Animais , Masculino , Feminino , Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/metabolismo , Hipotálamo/metabolismo , Tireotropina/metabolismo , Tireotropina/sangue , Reprodução/fisiologia , Iodotironina Desiodinase Tipo II , Temperatura , Fotoperíodo , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiologia , Comportamento Sexual Animal/fisiologia
3.
BMC Vet Res ; 20(1): 255, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867209

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) infection during late gestation substantially lowers fetal viability and survival. In a previous genome-wide association study, a single nucleotide polymorphism on chromosome 7 was significantly associated with probability of fetuses being viable in response to maternal PRRSV-2 infection at 21 days post maternal inoculation. The iodothyronine deiodinase 2 (DIO2) gene, located ~ 14 Kilobase downstream of this SNP, was selected as a priority candidate related to fetal susceptibility following maternal PRRSV-2 infection. Our objectives were to identify mutation(s) within the porcine DIO2 gene and to determine if they were associated with fetal outcomes after PRRSV-2 challenge. Sequencing of the DIO2, genotyping identified variants, and association of DIO2 genotypes with fetal phenotypes including DIO2 mRNA levels, viability, survival, viral loads, cortisol and thyroid hormone levels, and growth measurements were conducted. RESULTS: A missense variant (p.Asn91Ser) was identified in the parental populations from two independent PRRSV-2 challenge trials. This variant was further genotyped to determine association with fetal PRRS outcomes. DIO2 mRNA levels in fetal heart and kidney differed by the genotypes of Asn91Ser substitution with significantly greater DIO2 mRNA expression in heterozygotes compared with wild-type homozygotes (P < 0.001 for heart, P = 0.002 for kidney). While Asn91Ser did not significantly alter fetal viability and growth measurements, interaction effects of the variant with fetal sex or trial were identified for fetal viability or crown rump length, respectively. However, this mutation was not related to dysregulation of the hypothalamic-pituitary-adrenal and thyroid axis, indicated by no differences in circulating cortisol, T4, and T3 levels in fetuses of the opposing genotypes following PRRSV-2 infection. CONCLUSIONS: The present study suggests that a complex relationship among DIO2 genotype, DIO2 expression, fetal sex, and fetal viability may exist during the course of fetal PRRSV infection. Our study also proposes the increase in cortisol levels, indicative of fetal stress response, may lead to fetal complications, such as fetal compromise, fetal death, or premature farrowing, during PRRSV infection.


Assuntos
Iodeto Peroxidase , Mutação de Sentido Incorreto , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Feminino , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Gravidez , Iodotironina Desiodinase Tipo II , Genótipo , Feto/virologia
4.
Gen Comp Endocrinol ; 357: 114601, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39179122

RESUMO

Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage. Extensive studies have shown that estrogen's role in female plumage formation requires thyroid hormone; however, the precise mechanisms of their interaction remain unclear. In this study, we investigated the roles of estrogen and thyroid hormone in creating sexual dimorphism in the structure and coloration of saddle feathers by administering each hormone to adult males and observing the resulting changes in regenerated feathers induced by plucking. RT-PCR analysis revealed that the expression of type 3 deiodinase (DIO3), responsible for thyroid hormone inactivation, correlates with fringing. Estrogen suppressed DIO3 and agouti signaling protein (ASIP) expression while stimulating BlSK1, a marker of barbule cells, resulting in female-like feathers with mottled patterns and lacking fringes. Administration of thyroxine (T4) stimulated BlSK1 and proopiomelanocortin (POMC) expression, with no effect on ASIP, leading to the formation of solid black feathers lacking fringes. Triiodothyronine (T3) significantly increased POMC expression in pulp cells in culture. Taken together, these findings suggest that estrogen promotes the formation of solid vanes by suppressing DIO3 expression, while also inducing the formation of mottled patterns through inhibition of ASIP expression and indirect stimulation of melanocortin expression via changes in local T3 concentration. This is the first report describing molecular mechanism underlying hormonal crosstalk in creating sexual dimorphism in feathers.


Assuntos
Galinhas , Plumas , Caracteres Sexuais , Animais , Plumas/metabolismo , Galinhas/metabolismo , Masculino , Feminino , Hormônios Tireóideos/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia
5.
Hum Hered ; 88(1): 29-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944328

RESUMO

INTRODUCTION: We have reported that high total homocysteine and the coexistence of inadequate thyroid hormones in maternal serum increase the risk of fetal neural tube defects (NTDs). Placental iodothyronine deiodinases (DIOs: DIO1, DIO2, and DIO3) play a role in regulating the conversions between different forms of maternal thyroid hormones. This study hypothesized that single nucleotide polymorphisms (SNPs) in placental DIOs genes could be related to NTDs. METHODS: We performed a case-control study from 2007 to 2009 that included pregnant women from Lüliang, Shanxi Province, China. Nine distinct SNPs in DIOs genes were analyzed, and placental samples were obtained from 83 pregnant women with NTD fetuses and 90 pregnant women with normal fetuses. The nine SNPs were analyzed using the Cochran-Armitage test and the Fisher's exact test. RESULTS: There were no statistically significant differences between case and control in the nine SNPs of DIOs (p > 0.05). CONCLUSIONS: The results of this study suggested that SNPs of DIO genes in the placenta among pregnant women have no statistically significant difference between the two groups, suggesting that other factors might be involved in metabolism of maternal thyroid hormone provided to fetuses, such as epigenetic modification of methylation and homocysteinylation and genomic imprinting in the placenta. Further functional studies on placenta samples are necessary.


Assuntos
Defeitos do Tubo Neural , Placenta , Gravidez , Humanos , Feminino , Placenta/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Estudos de Casos e Controles , Prevalência , Hormônios Tireóideos/metabolismo , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , China/epidemiologia
6.
Pestic Biochem Physiol ; 199: 105801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458692

RESUMO

Atrazine is a widely applied herbicide to improve crop yield and maintain general health. It has been reported to impair thyroid function and architecture in experimental animals. Alterations in thyroid hormones disrupt normal body function and metabolism. Silymarin, a hepatoprotective flavonolignan, was found to improve thyroid function and body metabolism. Additionally, garlic displays several protective effects on body organs. Therefore, this study explored the prophylactic impact of natural compounds comprising silymarin and garlic extract on disrupted thyroid function, hepatic iodothyronine deiodinase type 1, and metabolic parameters in atrazine-intoxicated male rats. We found that daily pre- and co-treatment of atrazine-intoxicated male rats with silymarin (100 mg/kg, p.o) and/or garlic extract (10 mg/kg, p.o) significantly improved thyroid activation and hepatic functionality as evidenced by the re-establishment of T3, T3/T4, and TSH values as well as ALT and AST activities. Interestingly, individual or concurrent supplementation of the atrazine group with silymarin and garlic extract prevented the down-regulation in hepatic iodothyronine deiodinase type 1. These effects were coupled with the repletion of serum and hepatic antioxidants and the amelioration of lipid peroxidation. In addition, current natural products markedly alleviated weight gain, dyslipidemia, hyperglycemia, glucose intolerance, and insulin resistance. Notably, a cocktail of silymarin and garlic extract exerted superior protection against atrazine-triggered deterioration of thyroid, hepatic, and metabolic functioning to individual treatments. Present findings pinpoint the prophylactic and synergistic influence of silymarin and garlic extract combinatorial regimen on thyroid activation and body metabolism via enhancing antioxidant potential, maintaining hepatic function, and iodothyronine deiodinase type 1.


Assuntos
Atrazina , Alho , Silimarina , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Alho/metabolismo , Atrazina/toxicidade , Silimarina/farmacologia , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia , Fígado
7.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339190

RESUMO

Low levels of triiodothyronine (T3) in the brain lead to increased dopamine receptor sensitivity, potentially resulting in schizophrenia. Iodothyronine deiodinase 2 (DIO2) is the only enzyme which converts tetraiodothyronine (T4) to T3 in the brain. DIO2 polymorphism of rs225014 results in the expression of non-functioning DIO2. Therefore, this study aimed to investigate the association of rs255014 with schizophrenia and its impact on thyroid hormone levels. This study included 150 schizophrenia cases and 150 controls. DNA was extracted from blood and subjected to PCR and amplicon sequencing. Serum thyroid profiles were determined using chemiluminescent magnetic microparticle immunoassay. Statistical analyses involved independent sample t-tests, Chi-square, and Pearson's correlation tests. The results revealed a higher frequency of the reference genotype (TT) in controls compared to cases (p < 0.05). However, rs225014 did not influence serum thyroid levels or the severity of schizophrenia (p > 0.05). Interestingly, control subjects exhibited significantly higher T3 levels (p < 0.001) than cases. Regardless of the genotype (TT or CC), the control group had higher mean T3 levels than the corresponding case group (p < 0.05). In conclusion, rs225014 is associated with schizophrenia and has no effect on serum thyroid hormone levels.


Assuntos
Iodotironina Desiodinase Tipo II , Esquizofrenia , Glândula Tireoide , Humanos , Iodeto Peroxidase/genética , Iodotironina Desiodinase Tipo II/genética , Paquistão , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Glândula Tireoide/metabolismo , Hormônios Tireóideos , Tiroxina , Tri-Iodotironina
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999949

RESUMO

It is known that the inflammation process leading to oxidative stress and thyroid hormone metabolism dysfunction is highly altered in metabolic dysfunction associated with steatotic liver disease (MASLD). This study aims to address the effect of ornithine aspartate (LOLA) and vitamin E (VitE) in improving these processes. Adult Sprague-Dawley rats were assigned to five groups and treated for 28 weeks: controls (n = 10) received a standard diet (for 28 weeks) plus gavage with distilled water (DW) from weeks 16 to 28. MASLD groups received a high-fat and choline-deficient diet for 28 weeks (MASLD group) and daily gavage with 200 mg/kg/day of LOLA, or twice a week with 150 mg of VitE from weeks 16-28. LOLA diminished collagen deposition (p = 0.006). The same treatment diminished carbonyl, TBARS, and sulfhydryl levels and GPx activity (p < 0.001). Type 3 deiodinase increased in the MASLD group, downregulating T3-controlled genes, which was corrected in the presence of LOLA. LOLA also promoted a near-normalization of complex II, SDH, and GDH activities (p < 0.001) and improved reticulum stress, with a reduction in GRP78 and HSPA9/GRP75 protein levels (p < 0.05). The enhanced energy production and metabolism of thyroid hormones, probably because of GSH replenishment provided by the L-glutamate portion of LOLA, opens a new therapeutic approach for MASLD.


Assuntos
Estresse Oxidativo , Ratos Sprague-Dawley , Vitamina E , Animais , Ratos , Vitamina E/farmacologia , Vitamina E/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Dipeptídeos
9.
Clin Endocrinol (Oxf) ; 98(1): 117-122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35419870

RESUMO

OBJECTIVE: To understand differences in thyroid hormone replacement therapy with levo-thyroxine (l-T4) between acquired and congenital hypothyroid (CH) patients. DESIGN: We compared biochemical thyroid parameters between euthyroid subjects (EU) and both CH adult patients and thyroidectomized patients (TP) under replacement therapy. PATIENTS AND MEASUREMENTS: A retrospective analysis was performed on a series of 98 consecutive adult CH patients (27 males and 71 females) with a median age of 24 years (range 18-58). Serum TSH, FT3, FT4, l-T4 dose and body weight were assessed. For comparison purposes, large series of 461 TP for thyroid cancer and 1852 EU followed at our Thyroid Clinic were used as control groups. RESULTS: The daily weight-based l-T4 dose was significantly higher in CH than TP group (1.9 vs. 1.7 mcg/kg, p = .03). FT3/FT4 ratio was significantly higher in the EU group, intermediate in CH and lower in TP groups (0.32, 0.28 and 0.24, respectively). Linear regression analysis displayed an inverse correlation between FT4 and TSH in all the groups. An inverse correlation between FT3 and TSH was observed in the TP group, but not in the EU and CH group suggesting that CH patients, under replacement therapy, display biochemical thyroid parameters similar to EU subjects. CONCLUSIONS: Adult CH patients require a higher daily l-T4 dose than adult TP. However, the different correlation of TSH and FT3 values between CH and TP patients suggests an adaptive and different hypothalamic-pituitary-thyroid axis regulation that may depend on the early timing of the onset of hypothyroidism in CH.


Assuntos
Hipotireoidismo Congênito , Terapia de Reposição Hormonal , Hipotireoidismo , Tiroxina , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Estudos Retrospectivos , Tiroxina/uso terapêutico , Hipotireoidismo Congênito/tratamento farmacológico , Masculino , Feminino , Hipotireoidismo/tratamento farmacológico
10.
Chemistry ; 29(9): e202203111, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36380701

RESUMO

The regioselective deiodinations of L-thyroxine (T4) play key roles in the thyroid hormone homeostasis. These reactions are catalyzed by three isoforms of the selenoenzymes, iodothyronine deiodinases (Dio1, Dio2 and Dio3), which are highly homologous in nature. Dio1 mediates 5'- or 5-deiodinations of T4 to produce T3 and rT3, respectively. In contrast, Dio2 and Dio3 are selective to 5'- or 5-deiodination to produce T3 and rT3, respectively. Understanding of the regioselectivity of deiodination at the molecular level is important as abnormal levels of thyroid hormone have been implicated in various clinical conditions, such as hypoxia, myocardial infarction, neuronal ischemia and cancer. In this paper, we report that the electronic properties of the iodine atoms in thyroxine (T4) can be modulated through a simple substitution in the 4'-phenolic moiety. This leads to the change in the regioselectivity of deiodination by different small molecule mimics of Dio enzymes. By using this chemical approach, we also show that the substitution of a strong electron withdrawing group facilitates the removal of all four iodine atoms in the T4 derivative. Theoretical investigations on the hydrogen bonded adducts of T4 with imidazole indicate that the charge on the iodine atoms depend on the nature of hydrogen bond between the -OH group of T4 and the imidazole moiety. While the imidazole can act as either hydrogen bond acceptor (HBA) or hydrogen bond donor (HBD), the protonated imidazole acts exclusively as HBD in T4-imidazole complex. These studies support the earlier observations that the histidine residue at the active sites of the deiodinases play an important role not only in the substrate binding, but also in altering the regioselectivity of the deiodination reactions.


Assuntos
Iodeto Peroxidase , Iodo , Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/química , Tiroxina/química , Tiroxina/metabolismo , Imidazóis , Tri-Iodotironina/química , Tri-Iodotironina/metabolismo
11.
Reprod Biol Endocrinol ; 21(1): 108, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968664

RESUMO

BACKGROUND: It has been long known that thyroid hormone regulates placental villi development, which is associated with the occurrence of miscarriage. However, whether abnormal thyroid hormone metabolism and transport in placental villi are involved in miscarriage is still to be verified. METHODS: Placental villi of elective terminations of pregnancies (ETPs) and miscarriage were collected. Proliferative activity and apoptosis of villi trophoblasts and angiogenesis were detected by TUNEL and immunochemistry. The expressions of thyroid hormone receptors (THRs), transthyretin (TTR), monocarboxylate transporter 8 (MCT8), organic anion transporting polypeptides 1A1 (OATP1A1), deiodinase 2 (Dio2) and Dio3 were examined by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. JEG3 cell was treated with iopanoic acid (IOP), an inhibitor of Dio2 activity, the expressions of Dio2, placenta growth factor (PLGF) and sFlt1 were detected by RT-PCR and Western blot. RESULTS: Cell proliferation was suppressed and apoptosis was increased in placental villi cytotrophoblasts of miscarriage. CD34+ vessel number and vascular endothelial growth factor (VEGF) protein abundance were decreased in miscarriage. In miscarriage group, the gene expression of Dio2, Dio3, TTR and THRα, but not THRß, MCT8 and OATP1A1, were downregulated. The protein abundances of TTR and THRα were downregulated in miscarriage group, but not THRß. The protein abundance of Dio2 in miscarriage villi was decreased compared with that in ETP. In JEG3 cells, the gene expression of PLGF was decreased and the expression of sFlt1 was increased in IOP treatment; The protein abundance of Dio2 was downregulated but the gene expression of Dio2 was unaffected in IOP treatment. CONCLUSION: Thyroid hormone transport and metabolism in miscarriage were disturbed and may impaired angiogenesis of placental villi, which was associated with the occurrence of miscarriage.


Assuntos
Aborto Espontâneo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Gravidez , Feminino , Aborto Espontâneo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vilosidades Coriônicas/metabolismo , Linhagem Celular Tumoral , Placenta/metabolismo , Hormônios Tireóideos/metabolismo
12.
FASEB J ; 36(2): e22141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981562

RESUMO

In peripheral tissues, triiodothyronine (T3) production and consequent thyroid hormone actions are mainly regulated by iodothyronine deiodinases (DIOs) classified into 3 types: D1, D2, and D3. We aimed to investigate the effects of peripheral DIOs on thyroid hormone economy independent of the hypothalamus-pituitary-thyroid axis. We cloned coding sequences of human DIOs with FLAG-tag and HiBiT-tag sequences into a pcDNA3.1 vector. To obtain full-length proteins, we modified these vectors by cloning the selenocysteine insertion sequence of each DIO (SECIS vectors). Western blot analyses and HiBiT lytic assay using HEK293T cells revealed that SECIS vectors expressed full-length proteins with substantial activity. Subsequently, in vivo transfections of pLIVE-based SECIS vectors into male C57BL/6J mice were performed by hydrodynamic gene delivery to generate mice overexpressing DIOs predominantly in the liver (D1, D2, and D3 mice). After 7 days from transfections, mice were analyzed to clarify phenotypes. To summarize, serum thyroid hormone levels did not change in D1 mice but D2 mice had higher serum free T3 levels. D3 mice developed hypothyroidism with higher serum reverse T3 (rT3) levels. Transfections with levothyroxine administration suggested that thyroid hormone action was upregulated in D2 mice. Our DIO-overexpressing mice provided insights on the physiological properties of upregulated DIOs: D2 augments local thyroid hormone action and recruits T3 into the circulation: D3 decreases circulating T3 and T4 levels with elevated rT3, leading to consumptive hypothyroidism. As D3 mice are expected to be a novel hypothyroidism model, they can contribute to progress in the field of thyroid hormone economy and action.


Assuntos
Iodeto Peroxidase/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Hipotireoidismo/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Glândula Tireoide/metabolismo , Tri-Iodotironina/metabolismo
13.
Crit Rev Toxicol ; 53(6): 339-371, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37554099

RESUMO

Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.


Assuntos
Disruptores Endócrinos , Glândula Tireoide , Animais , Humanos , Disruptores Endócrinos/toxicidade , Testes de Toxicidade , Ecotoxicologia , Hormônios Tireóideos , Medição de Risco
14.
Pharmacol Res ; 189: 106685, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773711

RESUMO

The iodothyronine deiodinases constitute a family of three selenoenzymes regulating the intracellular metabolism of Thyroid Hormones (THs, T4 and T3) and impacting on several physiological processes, including energy metabolism, development and cell differentiation. The type 1, 2 and 3 deiodinases (D1, D2, and D3), are sensitive, rate-limiting components within the TH axis, and rapidly control TH action in physiological conditions or disease. Notably, several human pathologies are characterized by deiodinases deregulation (e.g., inflammation, osteoporosis, metabolic syndrome, muscle wasting and cancer). Consequently, these enzymes are golden targets for the identification and development of pharmacological compounds endowed with modulatory activities. However, until now, the portfolio of inhibitors for deiodinases is limited and the few active compounds lack selectivity. Here, we describe the cephalosporin Cefuroxime as a novel D2 specific inhibitor. In both in vivo and in vitro settings, Cefuroxime acts as a selective inhibitor of D2 activity, without altering the enzymatic activity of D1 and D3. By inhibiting TH activation in target tissues, Cefuroxime alters the sensitivity of the hypothalamus-pituitary axis and interferes with the central regulation of THs levels, and is thus eligible as a potential new regulator of hyperthyroid pathologies, which affect thousands of patients worldwide.


Assuntos
Cefuroxima , Iodeto Peroxidase , Humanos , Iodeto Peroxidase/metabolismo , Reposicionamento de Medicamentos , Hormônios Tireóideos/metabolismo , Diferenciação Celular
15.
Ecotoxicol Environ Saf ; 249: 114363, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508826

RESUMO

Particle size-dependent biological effects of silver nanoparticles (AgNPs) are of great interest; however, the mechanism of action of silver ions (Ag+) released from AgNPs concerning AgNP particle size remains unclear. Thus, we evaluated the influence of particle size (20, 40, 60, and 80 nm) on the acute 96-h bioaccumulation and toxicity (swim bladder damage) of AgNPs in zebrafish (Danio rerio) larvae, with a focus on the mechanism of action of Ag+ released from differently sized AgNPs. The 40- and 60-nm AgNPs were more toxic than the 20- and 80-nm versions in terms of inflammation and oxidative damage to the swim bladder, as indicated by inhibition of type 2 iodothyroxine deiodinase enzyme activity, mitochondrial injury, and reduced 30-50% adenosine triphosphate content. Furthermore, up-regulation and down-regulation of swim bladder development-related gene expression was not observed for pbx1a and anxa5, but up-regulation expression of shha and ihha was observed with no statistical significance. That 20-nm AgNPs were less toxic was attributed to their rapid elimination from larvae in comparison with the elimination of 40-, 60-, and 80-nm AgNPs; thus, less Ag+ was released in 20-nm AgNP-exposed larvae. Failed inflation of swim bladders was affected by released Ag+ rather than AgNPs themselves. Overall, we reveal the toxicity contribution of Ag+ underlying the observed size-dependent effects of AgNPs and provide a scientific basis for comprehensively assessing the ecological risk and biosafety of AgNPs.


Assuntos
Sacos Aéreos , Nanopartículas Metálicas , Tamanho da Partícula , Prata , Animais , Sacos Aéreos/anormalidades , Sacos Aéreos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Larva/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
16.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902289

RESUMO

The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hormônios Tireóideos/metabolismo , Homeostase , Metabolismo Energético , Metabolismo dos Lipídeos/fisiologia
17.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835345

RESUMO

Low T3 syndrome occurs frequently in patients with sepsis. Type 3 deiodinase (DIO3) is present in immune cells, but there is no description of its presence in patients with sepsis. Here, we aimed to determine the prognostic impact of thyroid hormones levels (TH), measured on ICU admission, on mortality and evolution to chronic critical illness (CCI) and the presence of DIO3 in white cells. We used a prospective cohort study with a follow-up for 28 days or deceased. Low T3 levels at admission were present in 86.5% of the patients. DIO3 was induced by 55% of blood immune cells. The cutoff value of 60 pg/mL for T3 displayed a sensitivity of 81% and specificity of 64% for predicting death, with an odds ratio of 4.89. Lower T3 yielded an area under the receiver operating characteristic curve of 0.76 for mortality and 0.75 for evolution to CCI, thus displaying better performance than commonly used prognostic scores. The high expression of DIO3 in white cells provides a novel mechanism to explain the reduction in T3 levels in sepsis patients. Further, low T3 levels independently predict progression to CCI and mortality within 28 days for sepsis and septic shock patients.


Assuntos
Iodeto Peroxidase , Estresse Oxidativo , Choque Séptico , Tri-Iodotironina , Humanos , Iodeto Peroxidase/sangue , Estudos Prospectivos , Curva ROC , Choque Séptico/sangue , Choque Séptico/mortalidade , Tri-Iodotironina/sangue
18.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628946

RESUMO

Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRß1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.


Assuntos
Cerebelo , Iodeto Peroxidase , Animais , Ratos , Iodeto Peroxidase/genética , Células de Purkinje , RNA Mensageiro
19.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373256

RESUMO

Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Glutationa Peroxidase/metabolismo , Enxofre , Mamíferos/metabolismo
20.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138461

RESUMO

Selenocysteine selenenic acids (Sec-SeOHs) and selenocysteine selenenyl iodides (Sec-SeIs) have long been recognized as crucial intermediates in the catalytic cycle of glutathione peroxidase (GPx) and iodothyronine deiodinase (Dio), respectively. However, the observation of these reactive species remained elusive until our recent study, where we successfully stabilized Sec-SeOHs and Sec-SeIs using a protective molecular cradle. Here, we report the first demonstration of the chemical transformation from a Sec-SeI to a Sec-SeOH through alkaline hydrolysis. A stable Sec-SeI derived from a selenocysteine methyl ester was synthesized using the protective cradle, and its structure was determined by crystallographic analysis. The alkaline hydrolysis of the Sec-SeI at -50 °C yielded the corresponding Sec-SeOH in an 89% NMR yield, the formation of which was further confirmed by its reaction with dimedone. The facile and nearly quantitative conversion of the Sec-SeI to the Sec-SeOH not only validates the potential involvement of this process in the catalytic mechanism of Dio, but also highlights its utility as a method for producing a Sec-SeOH.


Assuntos
Iodetos , Selenocisteína , Selenocisteína/química , Oxirredução , Hidrólise , Glutationa Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA