RESUMO
BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.
Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Neonicotinoides , Compostos Organotiofosforados , Piretrinas , Tiazóis , Animais , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Guanidinas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Tiazóis/farmacologia , Controle de Mosquitos/métodos , Compostos Organotiofosforados/farmacologia , Malária/prevenção & controle , Malária/transmissão , Benin , Nitrilas/farmacologia , HumanosRESUMO
BACKGROUND: Decrease in malaria rates (e.g. incidence and cases) in Latin America maintains this region on track to achieve the goal of elimination. During the last 5 years, three countries have been certified as malaria free. However, the region fails to achieve the goal of 40% reduction on malaria rates and an increase of cases has been reported in some countries, including Ecuador. This scenario has been associated with multiple causes, such as decrease of funding to continue anti-malarial programmes and the development of insecticide resistance of the main malaria vectors. In Ecuador, official reports indicated phenotypic resistance in Aedes aegypti and Anopheles albimanus to deltamethrin and malathion, particularly in the coastal areas of Ecuador, however, information about the mechanisms of resistance have not been yet elucidated. This study aims to evaluate phenotypic response to deltamethrin and its relationship with kdr mutations in An. albimanus from two localities with different agricultural activities in southern coastal Ecuador. METHODS: The CDC bottle assay was carried out to evaluate the phenotypic status of the mosquito's population. Sequencing the voltage gated sodium channel gene (VGSC) sought knockdown mutations (kdr) in codons 1010, 1013 and 1014 associated with resistance. RESULTS: Phenotypic resistance was found in Santa Rosa (63.3%) and suspected resistance in Huaquillas (82.1%); with females presenting a higher median of knockdown rate (83.7%) than males (45.6%). No statistical differences were found between the distributions of knockdown rate for the two localities (p = 0.6048) which indicates no influence of agricultural activity. Although phenotypic resistance was confirmed, genetic analysis demonstrate that this resistance was not related with the kdr mechanism of the VGSC gene because no mutations were found in codons 1010 and 1013, while in codon 1014, 90.6% showed the susceptible sequence (TTG) and 7.3% ambiguous nucleotides (TKK and TYG). CONCLUSIONS: These results highlighted the importance of continuous monitoring of resistance in malaria vectors in Ecuador, particularly in areas that have reported outbreaks during the last years. It is also important to elucidate the mechanism involved in the development of the resistance to PYs to propose alternative insecticides or strategies for vector control in areas where resistance is present.
Assuntos
Anopheles , Inseticidas , Malária , Nitrilas , Animais , Feminino , Anopheles/genética , Códon , Equador , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , MasculinoRESUMO
Deltamethrin (DM) is a widely used insecticide that has demonstrated developmental toxicity in the early life stages of fish. To better characterize the underlying mechanisms, embryos from Tg(cmlc2:RFP), Tg(apo14:GFP), and Tg(mpx:GFP) transgenic strains of zebrafish were exposed to nominal DM concentrations of 0.1, 1, 10, 25, and 50 µg/L until 120 h post-fertilization (hpf). Heart size increased 56.7%, and liver size was reduced by 17.1% in zebrafish exposed to 22.7 and 24.2 µg/L DM, respectively. RNA sequencing and bioinformatic analyses predicted that key biological processes affected by DM exposure were related to inflammatory responses. Expression of IL-1 protein was increased by 69.0% in the 24.4 µg/L DM treatment, and aggregation of neutrophils in cardiac and hepatic histologic sections was also observed. Coexposure to resatorvid, an anti-inflammatory agent, mitigated inflammatory responses and cardiac toxicity induced by DM and also restored liver biomass. Our data indicated a complex proinflammatory mechanism underlying DM-induced cardiotoxicity and hepatotoxicity which may be important for key events of adverse outcomes and associated risks of DM to early life stages of fish.
Assuntos
Cardiotoxicidade , Peixe-Zebra , Animais , Piretrinas/toxicidade , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Nitrilas/toxicidade , Coração/efeitos dos fármacosRESUMO
Aedes albopictus is highly prevalent in the northern part of West Bengal and is considered to be responsible for the recent dengue outbreaks in this region. Control of this vector is largely relied on the use of synthetic pyrethroids, which can lead to the development of resistance. In the present study, larvae of three wild Ae. albopictus populations from the dengue-endemic regions were screened for deltamethrin resistance, and the role of cytochrome P450 monooxygenases (CYPs) was investigated in deltamethrin exposed and unexposed larvae. Two populations were incipient resistant, and one population was completely resistant against deltamethrin. Monooxygenase titration assay revealed the involvement of CYPs in deltamethrin resistance along with an induction effect of deltamethrin exposure. Gene expression studies revealed differential expression of five CYP6 family genes, CYP6A8, CYP6P12, CYP6A14, CYP6N3 and CYP6N6, with high constitutive expression of CYP6A8 and CYP6P12 in all the populations before and after deltamethrin exposure. From these findings, it was evident that CYPs play an important role in the development of deltamethrin resistance in the Ae. albopictus populations in this region.
Assuntos
Aedes , Sistema Enzimático do Citocromo P-450 , Dengue , Resistência a Inseticidas , Inseticidas , Larva , Animais , Aedes/genética , Aedes/efeitos dos fármacos , Aedes/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dengue/transmissão , Índia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Nitrilas/farmacologia , Piretrinas/farmacologiaRESUMO
This study examined the pattern of resistance to widely applied synthetic pyrethroids, i.e., cypermethrin and deltamethrin, against larvae of Rhipicephalus microplus ticks sampled from Marathwada region in Maharashtra, India. The study also examined the role of α- and ß-esterases and glutathione-S-transferase (GST) in resistance development. All eight R. microplus isolates tested were resistant to deltamethrin (RL IV), having RR50 values from 6.88 to 131.26. LPT analysis exhibited the resistance level II deltamethrin resistance in Beed and Hingoli, III in Dharashiv, and IV in Sambhajinagar, Parbhani, Latur, Jalna, and Nanded isolates. The LIT analysis showed that Dharashiv field isolates had the lowest LC50 value of 229.09 ppm against cypermethrin, while Sambhajinagar field isolates had the highest at 489.78 ppm. The RR50 ranged from 1145.45 to 2448.9. Seven isolates were level I resistant to cypermethrin while the Jalna isolate was level II resistant. In larvae treated with deltamethrin and cypermethrin, the activity of α- and ß-esterase enzymes increased significantly compared to control groups. The enzyme ratios in treated larvae ranged from 0.7533 to 1.7023 for α-esterase and 0.7434 to 3.2054 for ß-esterase. The Hingoli isolate treated with cypermethrin exhibited the highest α-esterase activity (903.261), whereas Sambhajinagar isolate had the highest GST enzyme ratio (2.8224) after deltamethrin exposure. When exposed to cypermethrin, the Hingoli isolate showed the highest GST enzyme ratio, 2.0832. The present study provides the current resistance status in tick populations from Marathwada region indicating deltamethrin and cypermethrin to be ineffective for tick control. The results also suggest that SP compounds should be regulated in this region and alternative control strategies should be introduced.
Assuntos
Acaricidas , Glutationa Transferase , Larva , Nitrilas , Piretrinas , Rhipicephalus , Animais , Piretrinas/farmacologia , Índia , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/enzimologia , Nitrilas/farmacologia , Larva/efeitos dos fármacos , Glutationa Transferase/metabolismo , Acaricidas/farmacologia , Esterases/metabolismo , Resistência a Inseticidas , Resistência a MedicamentosRESUMO
Deltamethrin (DM) is a highly effective and widely used pyrethroid pesticide. It is an environmental factor affecting public and occupational health and exerts direct toxic effects on the central nervous system. As the major target organs for neurotoxicity of DM, the hippocampus and the cerebellum are critical to the learning and motor function. Pregnant Wistar rats were randomly divided into four groups and gavaged at doses of 0, 1, 4or 10â¯mg/kg/d DM from gestational day (GD) 0 to postnatal day (PN) 21. The PC12 cells were selected to further verify the regulatory mechanisms of DM on the neurodevelopmental injury. We found that maternal exposure to DM caused learning, memory and motor dysfunction in male offspring. Maternal exposure to DM induced the decrease in the density of hippocampal dendritic spines in male offspring through the reduced expression of M1 mAchRs, which in turn reduced the mediated AKT/mTOR signaling pathway, contributing to the inhibition of dynamic changes of GluA1. Meanwhile, DM exposure inhibited the BDNF/TrkB signaling pathway, thereby reducing phosphorylation of stathmin and impairing cerebellar purkinje cell dendrite growth and development. Taken together, maternal exposure to DM during pregnancy and lactation could impair neurodevelopment of male offspring.
Assuntos
Exposição Materna , Nitrilas , Efeitos Tardios da Exposição Pré-Natal , Piretrinas , Gravidez , Ratos , Animais , Humanos , Feminino , Masculino , Exposição Materna/efeitos adversos , Ratos Wistar , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Lactação , Hipocampo/metabolismoRESUMO
Deltamethrin (DLM), in combination with the synergist piperonyl butoxide (PBO), is extensively used in pest control programs due to its potent pesticidal properties and appreciable safety margin. However, various research studies report their adverse effects on non-target organisms. In this study, we investigated the toxicity of DLM, PBO, and a DLM-PBO (3:1) combination on Labeo rohita (L. rohita) fish fingerlings. Fish behavior and mortality rates were recorded at different time intervals up to 96â¯h for concentrations of 0.003, 0.007, 0.015, 0.031, and 0.062⯵g/mL, respectively. Biochemical, hematological, and histopathological studies were carried out. High-performance liquid chromatography (HPLC) was used to detect and quantify residues in fish samples. The LC50 values after 48â¯h for DLM, PBO, and DLM-PBO exposed fish fingerlings were found to be 0.028, 0.066, and 0.007⯵g/mL, respectively. At a concentration of 0.003⯵g/mL of DLM, PBO, and DLM-PBO, the treated fish fingerlings exhibited similar behavior to the control group. Hematological parameters, such as red blood cell (RBC) and white blood cell (WBC) counts, were reduced in the treated groups compared to the control. Biochemical parameters showed increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), while total serum protein levels decreased in DLM, PBO, and DLM-PBO treated fingerlings. Histopathological examination of liver, gill, and heart tissues revealed lesions with hydropic degeneration in the liver and fusions of gill lamellae in the treated tissues. Fish fingerlings exposed to the DLM-PBO combination appeared highly prone to toxicity compared to those treated with DLM and PBO separately.
Assuntos
Cyprinidae , Nitrilas , Butóxido de Piperonila , Piretrinas , Poluentes Químicos da Água , Animais , Piretrinas/toxicidade , Butóxido de Piperonila/toxicidade , Nitrilas/toxicidade , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Bioacumulação , Dose Letal Mediana , Sinergistas de Praguicidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Comportamento Animal/efeitos dos fármacosRESUMO
Previous studies suggested that pyrethroid exposure was associated with elevated type 2 diabetes (T2D) risk, while it remains uncertain whether genetic predisposition modifies this association. A nested case-control study within the prospective Dongfeng-Tongji cohort comprised 1832 T2D cases, age- (±5 years) and sex-matched controls with qualified genotyping data. Serum pyrethroids were measured by gas chromatography-tandem mass spectrometry. Overall diabetes-related genetic risk score (GRS) or pathway-specific GRS, including unweighted GRSs (uGRS) and weighted GRSs (wGRS), was developed by genetic variants identified in Asian populations. Higher overall diabetes-related GRS and GRS specific to the pathway of impaired beta cell function (Beta-cell GRS) were associated with a higher incident T2D risk. Beta-cell uGRS significantly modified the association of serum permethrin (Pinteraction=0.04) and deltamethrin (Pinteraction=0.01) with T2D. Specifically, for each doubling increase in serum deltamethrin, the odds ratios (ORs) (95â¯% confidence intervals [CIs]) for T2D were 1.23 (0.98-1.56) and 0.91 (0.77-1.07) in the highest and lowest Beta-cell uGRS group, as well as 1.23 (1.02-1.47) and 0.95 (0.78-1.15) for Beta-cell wGRS group, respectively. When considering jointly, those with the highest deltamethrin levels and highest Beta-cell GRS had a substantially higher T2D risk, compared with the reference group (OR for uGRS: 3.79 [95â¯% CI: 2.03-7.07], Pinteraction=0.03 and 3.23 [95â¯% CI: 1.78-5.87], Pinteraction=0.05 for wGRS). Our findings suggested that genetic susceptibility to impaired beta-cell function should be considered for T2D prevention targeting pyrethroid exposure, particularly deltamethrin.
Assuntos
Diabetes Mellitus Tipo 2 , Interação Gene-Ambiente , Predisposição Genética para Doença , Células Secretoras de Insulina , Piretrinas , Diabetes Mellitus Tipo 2/genética , Piretrinas/sangue , Piretrinas/toxicidade , Humanos , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Masculino , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Estudos Prospectivos , Inseticidas/sangue , Inseticidas/toxicidade , Adulto , Nitrilas , China , Idoso , Fatores de RiscoRESUMO
OBJECTIVE: Deltamethrin (DLM) is a commonly used insecticide, which is harmful to many organs. Here, we explored the effects of chronic low-dose DLM residues on colon tissue and its potential mechanism. METHODS: The mice were given long-term low-dose DLM by intragastric administration, and the body weights and disease activity index (DAI) scores of the mice were regularly recorded. The colon tissues were then collected for hematoxylin-eosin, immunofluorescence and immunohistochemistry staining. Besides, the RNA sequencing was performed to explore the potential mechanism. RESULTS: Our results showed that long-term exposure to low-dose DLM could cause inflammation in mice colon tissue, manifested as weight loss, increased DAI score, increased apoptosis of colonic epithelial cells, and increased infiltration of inflammatory cells. However, we observed that after long-term exposure to DLM and withdrawal for a period of time, although apoptosis was restored, the recovery of colon inflammation was not ideal. Subsequently, we performed RNA sequencing and found that long-term DLM exposure could lead to the senescence of some cells in mice colon tissue. The results of staining of cellular senescence markers in colon tissue showed that the level of cellular senescence in the DLM group was significantly increased, and the p53 signalling related to senescence was also significantly activated, indicating that cellular senescence played a key role in DLM-induced colitis. We further treated mice with quercetin (QUE) after long-term DLM exposure, and found that QUE could indeed alleviate DLM-induced colitis. In addition, we observed that long-term accumulation of DLM could aggravate DSS-induced colitis in mice, and QUE treatment could reverse this scenario. CONCLUSION: Continuous intake of DLM caused chronic colitis in mice, and the inflammation persisted even after discontinuation of DLM intake. This was attributed to the induction of cellular senescence in colon tissue. Treatment with QUE alleviated DLM-induced colitis by reducing cellular senescence. Long-term DLM exposure also aggravated DSS-induced colitis, which could be mitigated by QUE treatment.
Assuntos
Colite , Nitrilas , Piretrinas , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/induzido quimicamente , Senescência Celular , Camundongos Endogâmicos C57BLRESUMO
Deltamethrin is a widely used synthetic pyrethroid pesticide. It causes reproductive toxicity. Aim of the work: it evaluates the impact of vitamin E in restoration of the testicular integrity of albino rats after toxicity induced by Deltamethrin. Thirty-six adult male albino rats were included, and they were further sub-divided into four experimental groups; Group A: six rats served as controls. Group B (Model): 10 rats equally divided into two sub-groups (B1): the rats received deltamethrin dissolved in oil in a dose of 0.6 mg/kg/daily by nasogastric gavage for 2 weeks. (B2): the rats received Deltamethrin in the same dose of group B1 for 1 month. Group C (Protected): 10 rats equally divided into two sub-groups (C1): the rats received deltamethrin orally 0.6 mg/kg/day concomitant with Vitamin E dissolved in 1 ml of corn oil in a dose 200 mg/kg/day by nasogastric gavage for 2 weeks. (C2): the rats received deltamethrin concomitant with Vitamin E in the same dose of group C1 for 1 month. Group D (Treatment): 10 rats received deltamethrin for 1 month followed by Vitamin E for another month in the same previously prescribed doses. Significant decreases in serum testosterone level, GSH, catalase activity, and significant increase in MDA in the deltamethrin-treated group were detected. Moreover, histological and ultrastructural examinations of the testis seminiferous tubules showed detrimental alterations in the deltamethrin group which were duration dependent. Vitamin E administration reversed such alterations. Vitamin E ameliorates the testicular dysfunction caused by Deltamethrin.
Assuntos
Nitrilas , Piretrinas , Vitamina E , Ratos , Masculino , Animais , Vitamina E/farmacologia , Testículo , Antioxidantes/farmacologia , Piretrinas/metabolismo , Piretrinas/farmacologia , Estresse OxidativoRESUMO
Deltamethrin (DLM) is a newer kind of insecticide that is used on pets, livestock, and crops, as well as to combat malaria vectors and household pests. It belongs to the synthetic pyrethroid group and is being promoted as an alternative to organophosphate chemicals due to its persistent and destructive effects. The current study aimed to evaluate the impact of sub-chronic oral exposure to DLM on autoimmune activity in rats. Three groups of male albino rats (15 rats/group) including the control group, the ethanol-treated group (1 ml/rat), and the DLM-treated group (5 mg/kg b.w). Samples of blood were taken from all groups at 4-, 8- and 12-week intervals for the determination of hematological, cytokines, and immunological parameters. T lymphocyte subsets and Treg lymphocytes were determined in serum using flow cytometric acquisition. The results revealed that DLM significantly increased TNF-α, IL-33, IL-6, IL-17, IgG, IgM, WBCs, differential count, and platelets while decreasing Hb concentration and RBCs. Additionally, DLM decreased the number of T-cell subsets (CD3, CD4, CD5, and CD8) and Treg lymphocytes. All of these impacts became more severe over time. It is possible to conclude that the sub-chronic oral exposure to DLM disturbed autoimmune activity through the disturbances in immunological indices, CDs subset Treg lymphocytes.
Assuntos
Inseticidas , Nitrilas , Piretrinas , Animais , Piretrinas/toxicidade , Piretrinas/administração & dosagem , Nitrilas/toxicidade , Nitrilas/farmacologia , Nitrilas/administração & dosagem , Masculino , Ratos , Inseticidas/toxicidade , Citocinas/sangue , Citocinas/metabolismo , Autoimunidade/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/sangue , Ratos WistarRESUMO
Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.
Assuntos
Transportador de Glucose Tipo 4 , Inseticidas , Locusta migratoria , Nitrilas , Ovário , Piretrinas , Interferência de RNA , Animais , Piretrinas/farmacologia , Feminino , Nitrilas/farmacologia , Ovário/metabolismo , Ovário/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Locusta migratoria/genética , Locusta migratoria/efeitos dos fármacos , Locusta migratoria/metabolismo , Inseticidas/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Vitelogeninas/metabolismo , Vitelogeninas/genética , Metabolismo Energético/efeitos dos fármacos , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Hormônios Juvenis/metabolismo , Hormônios Juvenis/farmacologia , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Triglicerídeos/metabolismoRESUMO
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 µg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Assuntos
Carpas , Nitrilas , Piretrinas , Animais , Transcriptoma , Ecossistema , Metaboloma , Esteroides , Encéfalo , HormôniosRESUMO
To study the acaricide resistance status and possible mechanisms of action in conferring resistance to commonly used acaricides (deltamethrin and coumaphos), Hyalomma anatolicum ticks were collected from 6 dairy farms of Hisar and Charkhi Dadri districts of Haryana. By using standard larval packet test, H. anatolicum tick larvae of Charkhi Dadri isolates were found to be susceptible (100% mortality) to both the acaricides. Level-I resistance against coumaphos was recorded from four isolates, whereas, level-II was observed in only one isolate, collected from Hisar. One isolates (Kaimri) from Hisar also showed level-I resistance against deltamethrin. Biochemically, the ticks having higher values of resistance factor (RF) against coumaphos were found to possess increased enzymatic activity of α-esterase, ß-esterase, glutathione-S-transferase (GST) and mono-oxygenase enzymes, whereas, the monoamine oxidase did not show any constant trend. However, the RF showed a statistical significant correlation with GST only. Native PAGE analysis of H. anatolicum ticks revealed the presence of nine types of esterases (EST-1 h to EST-9 h) by using napthyl acetate as substrate. In the inhibitory assay, esterases were found to be inhibited by PMSF, indicating the presence of serine residue at catalytic triad. The partial cds of carboxylesterase and domain II of sodium channel genes were sequenced to determine any proposed mutations in resistant isolates of H. anatolicum ticks, however, no mutations were observed in either gene, indicating that increased expression of detoxification enzymes as a possible mechanism for resistance development, in the current study.
Assuntos
Acaricidas , Cumafos , Ixodidae , Nitrilas , Piretrinas , Animais , Piretrinas/farmacologia , Nitrilas/farmacologia , Acaricidas/farmacologia , Ixodidae/efeitos dos fármacos , Ixodidae/genética , Ixodidae/fisiologia , Cumafos/farmacologia , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Índia , Resistência a Medicamentos/genética , Resistência a Inseticidas/genética , Feminino , Esterases/metabolismo , Esterases/genéticaRESUMO
Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.
Assuntos
Inseticidas , Nitrilas , Piretrinas , Piretrinas/toxicidade , Nitrilas/toxicidade , Inseticidas/toxicidade , Humanos , Animais , Resíduos de Praguicidas/toxicidade , Resíduos de Praguicidas/análise , Medição de Risco , Poluentes Ambientais/toxicidadeRESUMO
Nanoparticles have been shown to inhibit major life cycle stages of ticks, indicative of the promising application of nanomaterials against hard ticks. The study thus probed into one of the alternative options to curtail Hyalomma by employing nanocomposites consisting of pyrethroids (cypermethrin and deltamethrin) coated nanoparticles of iron oxides and iron sulfides keeping alongside the evaluation of their toxicity through plant and mammalian cell lines. The nanoparticles used in this study were roughly spherical in morphology and exhibited various size dimensions upon characterization using SEM, EDX, and FTIR. The application of nanomaterials on female ovipositioning tick showed a decline up to 15% (females ovipositioned) in deltamethrin-coated FeO NPs, whereas this decline was up to 18% in Cyp-FeS NPs and up to 5% in Cyp-FeO NPs. Similarly, the larval hatching was also impacted, leading to a hatching percentage of 5% and only 1% by application of Cyp-FeS NPs and Cyp-FeO NPs, respectively. Similarly, the larval groups had LC90 of 4.1 and 4.73 mg/L for the Cyp-FeO NPs and Cyp-FeS NPs groups. The delta-FeO NPs and delta-FeS NPs demonstrated a promising effect against adult ticks, showing LC50= 3.5 mg/L, LC90= 6.7 mg/L and LC50= 3.8 mg/L, LC90= 7.9 mg/L, respectively. MTT assay revealed that the pyrethroids coupled with iron oxide nanoparticles showed the least cytotoxicity even at the highest concentration (10-1 µL) among other nanomaterials. The study thus concluded a safer spectrum of non-target effects of pyrethroids-coated nanomaterials in addition to their significant anti-tick activity.
Assuntos
Ixodidae , Nanopartículas , Nitrilas , Piretrinas , Carrapatos , Animais , Feminino , Piretrinas/toxicidade , Nanopartículas/toxicidade , Ferro , MamíferosRESUMO
This study investigated the impact of deltamethrin (DM) toxicity on brown trout (Salmo trutta fario), examining its effects on the immune system, including the white blood cell (WBC), lymphocyte (Lym), total immunoglobulin (T. Ig), and lysozyme levels, as well as its neurotoxic consequences on the brain tissue. The neurotoxic effects encompassed oxidative stress, the activity of the antioxidant enzymes, such as the superoxide dismutase (SOD) and catalase (CAT), acetylcholinesterase (AChE) activity, and DNA damage using 8-hydroxy-2-deoxyguanosine (8-OHdG). The DM exposure led to elevated levels of malondialdehyde (MDA), and 8-OHdG, while concurrently causing a reduction in the AChE activity, protein and lipid content, WBC count, Lym, lysozyme activity, T. Ig levels, as well as the SOD and CAT levels in the brain tissues of groups 2 and 3 when compared to those in group 1. In summary, the findings of this study strongly indicate that DM induces DNA damage, immunotoxicity, and neurotoxicity in the brain tissue of brown trout, primarily due to the excessive production of reactive oxygen species (ROS). Moreover, the observed dose-dependent responses of DM to the environmental concentrations on all the investigated parameters suggest its potential utility in aquaculture risk assessment.
RESUMO
The purpose of this study was to explore the new effective method and investigate the dissipation of chlorfenapyr and deltamethrin (DM) pesticides used in the treatment of guava fruit from tropical and sub-tropical areas of Pakistan. Five different solutions of varying concentrations of pesticides were prepared. This study involved the in-vitro and in-vivo analysis of modulated electric flux-triggered degradation as an efficient method for the safer degradation of selected pesticides. The Taser gun was used as a tool for providing different numbers of electrical shocks of million voltages to the pesticides present in guava fruit at different temperatures. The degraded pesticides were extracted and analyzed by High-performance liquid chromatography (HPLC). The HPLC chromatograms verified that significant dissipation of pesticides took place when these were exposed to 9 shocks at 37 °C, which proved the efficiency of this degradation method. More than 50% of the total spray of both pesticides was dissipated. Thus, modulated electrical flux-triggered degradation is one of the effective methods for pesticide degradation.
Assuntos
Praguicidas , Psidium , Psidium/química , Frutas/químicaRESUMO
BACKGROUND: The widespread use of pyrethroid insecticides in Africa has led to the development of strong resistance in Anopheles mosquitoes. Introducing new active ingredients can contribute to overcome this phenomenon and ensure the effectiveness of vector control strategies. Transfluthrin is a polyfluorinated pyrethroid whose structural conformation was thought to prevent its metabolism by cytochrome P450 monooxygenases in malaria vectors, thus representing a potential alternative for managing P450-mediated resistance occurring in the field. In this study, a controlled selection was used to compare the dynamics of resistance between transfluthrin and the widely used pyrethroid deltamethrin in the mosquito Anopheles gambiae. Then, the associated molecular mechanisms were investigated using target-site mutation genotyping and RNA-seq. METHODS: A field-derived line of An. gambiae carrying resistance alleles at low frequencies was used as starting material for a controlled selection experiment. Adult females were selected across 33 generations with deltamethrin or transfluthrin, resulting in three distinct lines: the Delta-R line (selected with deltamethrin), the Transflu-R line (selected with transfluthrin) and the Tiassale-S line (maintained without selection). Deltamethrin and transfluthrin resistance levels were monitored in each selected line throughout the selection process, as well as the frequency of the L1014F kdr mutation. At generation 17, cross-resistance to other public health insecticides was investigated and transcriptomes were sequenced to compare gene transcription variations and polymorphisms associated with adaptation to each insecticide. RESULTS: A rapid increase in resistance to deltamethrin and transfluthrin was observed throughout the selection process in each selected line in association with an increased frequency of the L1014F kdr mutation. Transcriptomic data support a broader response to transfluthrin selection as compared to deltamethrin selection. For instance, multiple detoxification enzymes and cuticle proteins were specifically over-transcribed in the Transflu-R line including the known pyrethroid metabolizers CYP6M2, CYP9K1 and CYP6AA1 together with other genes previously associated with resistance in An. gambiae. CONCLUSION: This study confirms that recurrent exposure of adult mosquitoes to pyrethroids in a public health context can rapidly select for various resistance mechanisms. In particular, it indicates that in addition to target site mutations, the polyfluorinated pyrethroid transfluthrin can select for a broad metabolic response, which includes some P450s previously associated to resistance to classical pyrethroids. This unexpected finding highlights the need for an in-depth study on the adaptive response of mosquitoes to newly introduced active ingredients in order to effectively guide and support decision-making programmes in malaria control.
Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Feminino , Animais , Transcriptoma , Anopheles/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Piretrinas/farmacologiaRESUMO
BACKGROUND: Controlling malaria-transmitting Anopheles mosquitoes with pyrethroid insecticides is becoming increasingly challenging because of widespread resistance amongst vector populations. The development of new insecticides and insecticidal formulations is time consuming and costly, however. A more active crystalline form of deltamethrin, prepared by heating the commercial crystalline form, previously was reported to be 12-times faster acting against susceptible North American Anopheles quadrimaculatus mosquitoes. Herein the potential for heat-activated deltamethrin dispersed on chalk to overcome various resistance mechanisms amongst five West African Anopheles strains is investigated, and its long-term sustained lethality evaluated. METHODS: The more active deltamethrin form was generated in a commercial dust containing deltamethrin by heating the material as purchased. Tarsal contact bioassays were conducted to investigate its efficacy, potency, and speed of action against resistant Anopheles populations compared to the commercially available form of deltamethrin dust. RESULTS: In all cases, D-Fense Dust heated to generate the more active form of deltamethrin was substantially more effective than the commercially available formulation. 100% of both Banfora M and Kisumu populations were knocked down 10 min post-exposure with no recovery afterwards. Gaoua-ara and Tiefora strains exhibited 100% knockdown within 15 min, and the VK7 2014 strain exhibited 100% knockdown within 20 min. In all cases, 100% mortality was observed 24 h post-exposure. Conversely, the commercial formulation (unheated) resulted in less than 4% mortality amongst VK7 2014, Banfora, and Gaoua-ara populations by 24 h, and Tiefora and Kisumu mosquitoes experienced 14 and 47% mortality by 24 h, respectively. The heat-activated dust maintained comparable efficacy 13 months after heating. CONCLUSIONS: The heat-activated form of commercial deltamethrin D-Fense Dust outperformed the material as purchased, dramatically increasing efficacy against all tested pyrethroid-resistant strains. This increase in lethality was retained for 13 months of storage under ambient conditions in the laboratory. Higher energy forms of commonly used insecticides may be employed to overcome various resistance mechanisms seen in African Anopheles mosquitoes through more rapid uptake of insecticide molecules from their respective solid surfaces. That is, resistant mosquitoes can be killed with an insecticide to which they are resistant without altering the molecular composition of the insecticide.