Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299324

RESUMO

Despite the obvious benefits of using ureteral stents to drain the ureters, there is also a risk of complications from 80-90%. The presence of a foreign body in the human body causes disturbances in its proper functioning. It can lead to biofilm formation on the stent surface, which may favor the development of urinary tract infections or the formation of encrustation, as well as stent fragmentation, complicating its subsequent removal. In this work, the effect of the polymeric coating containing the active substance-papaverine hydrochloride on the functional properties of ureteral stents significant for clinical practice were assessed. Methods: The most commonly clinically used polyurethane ureteral Double-J stent was selected for the study. Using the dip-coating method, the surface of the stent was coated with a poly(D,L-lactide-glycolide) (PLGA) coating containing the papaverine hydrochloride (PAP). In particular, strength properties, retention strength of the stent ends, dynamic frictional force, and the fluoroscopic visibility of the stent during X-ray imaging were determined. Results: The analysis of the test results indicates the usefulness of a biodegradable polymer coating containing the active substance for the modification of the surface of polyurethane ureteral stents. The stents coated with PLGA+PAP coating compared to polyurethane stents are characterized by more favorable strength properties, the smaller value of the dynamic frictional force, without reducing the fluoroscopic visibility.


Assuntos
Stents Farmacológicos , Papaverina/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Obstrução Ureteral/terapia , Implantes Absorvíveis , Materiais Biocompatíveis/farmacologia , Humanos , Papaverina/metabolismo , Poliuretanos/química , Obstrução Ureteral/metabolismo , Obstrução Ureteral/cirurgia
2.
Angle Orthod ; 88(5): 602-610, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29799272

RESUMO

OBJECTIVES: To determine the frictional force (FF) of the novel, elastic, bendable titanium-niobium (Ti-Nb) alloy orthodontic wire in stainless steel (SS) brackets and to compare it with those of titanium-nickel (Ti-Ni) and titanium-molybdenum (Ti-Mo) alloy wires. MATERIALS AND METHODS: Three sizes of Ti-Nb, Ti-Ni, and Ti-Mo alloy wires were ligated with elastic modules to 0.018-inch and 0.022-inch SS brackets. The dynamic FFs between the orthodontic wires and SS brackets were measured at three bracket-wire angles (0°, 5°, and 10°) with an Instron 5567 loading apparatus (Canton, Mass). RESULTS: FFs increased gradually with the angle and wire size. In the 0.018-inch-slot bracket, the dynamic FFs of Ti-Nb and Ti-Ni alloy wires were almost the same, and those of the Ti-Mo alloy wire were significantly greater ( P<0.05). FF values were 1.5-2 times greater in the 0.022-inch-slot bracket than in the 0.018-inch-slot bracket, regardless of alloy wire type, and the Ti-Mo alloy wire showed the greatest FF. Scanning electric microscopic images showed that the surface of the Ti-Mo alloy wire was much rougher than that of the Ti-Ni and Ti-Nb alloy wires. CONCLUSION: These findings demonstrate that the Ti-Nb alloy wire has almost the same frictional resistance as the Ti-Ni alloy wire, although it has a higher elastic modulus.


Assuntos
Fios Ortodônticos , Ligas , Elasticidade , Fricção , Técnicas In Vitro , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA