Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Nano Lett ; 24(35): 10883-10891, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39172995

RESUMO

The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 µm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.


Assuntos
Condutividade Elétrica , Polímeros , Dispositivos Eletrônicos Vestíveis , Humanos , Polímeros/química , Pirróis/química , Nanofibras/química , Celulose/química , Pele/química , Regulação da Temperatura Corporal , Titânio/química , Robótica
2.
Small ; : e2402938, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113331

RESUMO

With the rapid development of electronic industry, it's pressing to develop multifunctional electromagnetic interference (EMI) shielding materials to ensure the stable operation of electronic devices. Herein, multilayered flexible PEG@PAN/MXene (Ti3C2Tx)/PVDF@SiO2 (PMF) composite film has been constructed from the level of microstructure design via coaxial electrospinning, coating spraying, and uniaxial electrospinning strategies. Benefiting from the effective encapsulation for PEG and high conductivity of MXene coating, PEG@PAN/MXene composite film with MXene coating loading density of 0.70 mg cm-2 exhibits high thermal energy storage density of 120.77 J g-1 and great EMI shielding performance (EMI SE of 34.409 dB and SSE of 49.086 dB cm3 g-1) in X-band (8-12 GHz). Therefore, this advanced composite film can not only help electronic devices prevent the influence of electromagnetic pollution in the X-band but also play an important role in electronic device thermal management. Additionally, the deposition of nano PVDF@SiO2 fibers (289 ± 128 nm) endowed the PMF composite film with great hydrophobic properties (water contact angle of 126.5°) to ensure the stable working of hydrophilic MXene coating, thereby breaks the limitation of humid application environments. The finding paves a new way for the development of novel multifunctional EMI shielding composite films for electronic devices.

3.
Small ; 20(9): e2307873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853209

RESUMO

Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.

4.
Small ; 20(9): e2307148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840441

RESUMO

From a material design perspective, the incorporation of Fe3 O4 @carbon nanotube (Fe3 O4 @CNT) hybrids is an effective approach for reconciling the contradictions of high shielding and low reflection coefficients, enabling the fabrication of green shielding materials and reducing the secondary electromagnetic wave pollution. However, the installation of Fe3 O4 nanoparticles on nonmodified and nondestructive CNT walls remains a formidable challenge. Herein, a novel strategy for fabricating the above-mentioned Fe3 O4 @CNTs and subsequently assembling segregated Fe3 O4 @CNT networks in natural rubber (NR) matrices is proposed. The advanced and unique structure, magnetism, and lossless conductivity endow the as-obtained Fe3 O4 @CNT/NR with a shielding effectiveness (SE) of 63.8 dB and a low reflection coefficient of 0.24, which indicates a prominent green-shielding capability that surpasses those of previously reported green-shielding materials. Moreover, the specific SE reaches 531 dB cm-1 , exceeding that of those of previously reported carbon/polymer composites. Meanwhile, the outstanding conductivity enables the composite to reach a saturation temperature of ≈95 °C at a driving voltage of 1.5 V with long-term stability. Therefore, the as-fabricated Fe3 O4 @CNT/rubber composites represent an important development in green-shielding materials that are applied in cold environment.

5.
Small ; 20(12): e2307492, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946679

RESUMO

A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF-67 nanodots is prepared by in situ polymerization, with ZIF-67 and bio-based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal conductivity properties of polyurea (PUA). By adding 5 wt% polyaniline@cobalt phytate-2.0 (PANI@Co-PA-2.0), the peak of heat release rate and the peak of smoke production rate are reduced by 54.9 and 59.9%, respectively. The peak of CO and CO2 production also decreased by 46.2 and 53.1%, respectively. A decrease in the absorption intensity of aliphatic and aromatic volatiles is also observed. The fire safety of PUA is greatly improved. In addition, PUA/PANI@Co-PA-2.0 exhibits an EMI shielding capability of 22.4 dB with the help of reduced graphene oxide, which confirms the possibility of PUA material application in the field of electromagnetic shielding. The 5 wt% filler increases the tensile strength of the PUA matrix to 6.3 MPa, and the composite material obtains good thermal conductivity. This work provides a viable method for the preparation of a flame-retardant, conductive, and electromagnetic refractory PUA substrate.

6.
Small ; 20(38): e2401939, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924354

RESUMO

3D carbon-based porous sponges are recognized for significant potential in oil absorption and electromagnetic interference (EMI). However, their widespread application is hindered by a common compromise between high performance and affordability of mass production. Herein, a novel approach is introduced that involves laser-assisted micro-zone heating melt-blown spinning (LMHMS) to address this challenge by creating pitch-based submicron carbon fibers (PSCFs) sponge with 3D interconnected structures. These structures bestow the resulting sponge exceptional characteristics including low density (≈20 mg cm-3), high porosity (≈99%), remarkable compressibility (80% maximum strain), and superior conductivity (≈628 S m-1). The resultant PSCF sponges realize an oil/organic solvent sorption capacity over 56 g/g and possess remarkable regenerated ability. In addition to their effectiveness in cleaning up oil/organic solvent spills, they also demonstrated strong electromagnetic shielding capabilities, with a total shielding effectiveness (SE) exceeding 60 dB across the X-band GHz range. In virtue of extreme lightweight of ≈20 mg cm-3, the specific SE of the PSCF sponge reaches as high as ≈1466 dB cm3 g-1, surpassing the performance of numerous carbon-based porous structures. Thus, the unique blend of properties renders these sponges promising for transforming strategies in addressing oil/organic solvent contaminations and providing effective protection against EMI.

7.
Small ; 20(31): e2310191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431965

RESUMO

Wearable heaters with multifunctional performances are urgently required for the future personal health management. However, it is still challengeable to fabricate multifunctional wearable heaters simultaneously with flexibility, air-permeability, Joule heating performance, electromagnetic shielding property, and anti-bacterial ability. Herein, silver nanoparticles (AgNPs)@MXene heterostructure-decorated graphite felts are fabricated by introducing MXene nanosheets onto the graphite felts via a simple dip-coating method and followed by a facile in situ growth approach to grow AgNPs on MXene layers. The obtained AgNPs@MXene heterostructure decorated graphite felts not only maintain the intrinsic flexibility, air-permeability and comfort characteristics of the matrixes, but also present excellent Joule heating performance including wide temperature range (30-128 °C), safe operating conditions (0.9-2.7 V), and rapid thermal response (reaching 128 °C within 100 s at 2.7 V). Besides, the multifunctional graphite felts exhibit excellent electromagnetic shielding effectiveness (53 dB) and outstanding anti-bacterial performances (>95% anti-bacterial rate toward Bacillus subtilis, Escherichia coli and Staphy-lococcus aureus). This work sheds light on a novel avenue to fabricate multifunctional wearable heaters for personal healthcare and personal thermal management.


Assuntos
Antibacterianos , Grafite , Nanopartículas Metálicas , Prata , Dispositivos Eletrônicos Vestíveis , Grafite/química , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos
8.
MAGMA ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967865

RESUMO

OBJECTIVE: To propose a deep learning-based low-field mobile MRI strategy for fast, high-quality, unshielded imaging using minimal hardware resources. METHODS: Firstly, we analyze the correlation of EMI signals between the sensing coil and the MRI coil to preliminarily verify the feasibility of active EMI shielding using a single sensing coil. Then, a powerful deep learning EMI elimination model is proposed, which can accurately predict the EMI components in the MRI coil signals using EMI signals from at least one sensing coil. Further, deep learning models with different task objectives (super-resolution and denoising) are strategically stacked for multi-level post-processing to enable fast and high-quality low-field MRI. Finally, extensive phantom and brain experiments were conducted on a home-built 0.2 T mobile brain scanner for the evaluation of the proposed strategy. RESULTS: 20 healthy volunteers were recruited to participate in the experiment. The results show that the proposed strategy enables the 0.2 T scanner to generate images with sufficient anatomical information and diagnostic value under unshielded conditions using a single sensing coil. In particular, the EMI elimination outperforms the state-of-the-art deep learning methods and numerical computation methods. In addition, 2 × super-resolution (DDSRNet) and denoising (SwinIR) techniques enable further improvements in imaging speed and quality. DISCUSSION: The proposed strategy enables low-field mobile MRI scanners to achieve fast, high-quality imaging under unshielded conditions using minimal hardware resources, which has great significance for the widespread deployment of low-field mobile MRI scanners.

9.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39275528

RESUMO

The research on MEMS wireless sensing technology adapted to strong power frequency electromagnetic field environments is of great significance to our energy security, economic society, and even national security. Here, we propose a subwavelength cross-meandering resonator (0.49λ0 × 0.49λ0) to simultaneously achieve power frequency electromagnetic field shielding and wireless communication signal transmission. The element size of the resonator is only λ0/11, which is much smaller than that of previous works. In the resonator, a resonance mode with the significant near-field enhancement effect (about 180 times that at f = 1 GHz) is supported. Based on the self-made shielding box experimental setup, the measured shielding effectiveness of the resonator sample can reach more than 33 dB. Moreover, by integrating the cross-meandering resonator with the MEMS sensor, a wireless communication signal can be successfully transmitted. A dual-function cross-meandering resonator integrated with sensors may find potential applications in many military and civilian industries associated with strong power frequency electromagnetic fields.

10.
Molecules ; 29(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339379

RESUMO

The utilization of sheet structure composites as a viable conductive filler has been implemented in polymer-based electromagnetic shielding materials. However, the development of an innovative sheet structure to enhance electromagnetic shielding performance remains a significant challenge. Herein, we propose a novel design incorporating silver-modified nanosheet self-assembled hollow spheres to optimize their performance. The unique microporous structure of the hollow composite, combined with the self-assembled surface nanosheets, facilitates multiple reflections of electromagnetic waves, thereby enhancing the dissipation of electromagnetic energy. The contribution of absorbing and reflecting electromagnetic waves in hollow nanostructures could be attributed to both the inner and outer surfaces. When multiple reflection attenuation is implemented, the self-assembled stack structure of nanosheets outside the composite material significantly enhances the occurrence of multiple reflections, thereby effectively improving its shielding performance. The structure also facilitates multiple reflections of incoming electromagnetic waves at the internal and external interfaces of the material, thereby enhancing the shielding efficiency. Simultaneously, the incorporation of silver particles can enhance conductivity and further augment the shielding properties. Finally, the optimized Ag/NiSi-Ni nanocomposites can demonstrate superior initial permeability (2.1 × 10-6 H m-1), saturation magnetization (13.2 emu g-1), and conductivity (1.2 × 10-3 Ω•m). This work could offer insights for structural design of conductive fillers with improved electromagnetic shielding performance.

11.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999060

RESUMO

Incorporating outstanding flame retardancy and electromagnetic interference shielding effectiveness (EMI SE) into polymers is a pressing requirement for practical utilization. In this study, we first employed the principles of microencapsulation and electrostatic interaction-driven self-assembly to encapsulate polyethyleneimine (PEI) molecules and Ti3C2Tx nanosheets on the surface of ammonium polyphosphate (APP), forming a double-layer-encapsulated structure of ammonium polyphosphate (APP@PEI@Ti3C2Tx). Subsequently, flame-retardant thermoplastic polyurethane (TPU) composites were fabricated by melting the flame-retardant agent with TPU. Afterwards, by using air-assisted thermocompression technology, we combined a reduced graphene oxide (rGO) film with flame-retardant TPU composites to fabricate hierarchical TPU/APP@PEI@Ti3C2Tx/rGO composites. We systematically studied the combustion behavior, flame retardancy, and smoke-suppression performance of these composite materials, as well as the flame-retardant mechanism of the expansion system. The results indicated a significant improvement in the interface interaction between APP@PEI@Ti3C2Tx and the TPU matrix. Compared to pure TPU, the TPU/10APP@PEI@1TC composite exhibited reductions of 84.1%, 43.2%, 62.4%, and 85.2% in peak heat release rate, total heat release, total smoke release, and total carbon dioxide yield, respectively. The averaged EMI SE of hierarchical TPU/5APP@PEI@1TC/rGO also reached 15.53 dB in the X-band.

12.
Nano Lett ; 22(16): 6573-6579, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939658

RESUMO

Despite being a requisite for modern transparent electronics, few metals have a sufficiently high infrared transmittance due to the free electron response. Here, upon alloying the correlated metal SrVO3 with BaVO3, the medium wavelength infrared transmittance at a wavelength of 4 µm is found to be 50% higher than those for Sn-doped In2O3 (ITO) and La-doped BaSnO3 (BLSO). The room temperature resistivity of the alloy of ∼100 µΩ cm is 1 order of magnitude lower than those of ITO and BLSO, guaranteeing a profound electromagnetic shielding effectiveness of 22-31 dB at 10 GHz in the X-band. Systematic investigations reveal symmetry breaking of VO6 oxygen octahedra in SrVO3 due to the substitution of Sr2+ with larger Ba2+ ions, localization of electrons in the lower energy V-dyz and dzx orbitals, and stronger correlation effects. The lattice-orbital-charge-coupled engineering of the electronic band structure in correlated metals offers a new design strategy to create super-broad-band transparent conductors with an enhanced shielding capability.

13.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674515

RESUMO

The progress of the automated industry has introduced many benefits in our daily life, but it also produces undesired electromagnetic interference (EMI) that distresses the end-users and functionality of electronic devices. This article develops new composites based on a polyetherimide (PEI) matrix and cobalt ferrite (CoFe2O4) nanofiller (10-50 wt%) by mixing inorganic phase in the poly(amic acid) solution, followed by film casting and controlled heating, to acquire the corresponding imide structure. The composites were designed to contain both electric and magnetic dipole sources by including highly polarizable groups (phenyls, ethers, -CN) in the PEI structure and by loading this matrix with magnetic nanoparticles, respectively. The films exhibited high thermal stability, having the temperature at which decomposition begins in the interval of 450-487 °C. Magnetic analyses indicated a saturation magnetization, coercitive force, and magnetic remanence of 27.9 emu g-1, 705 Oe, and 9.57 emu g-1, respectively, for the PEI/CoFe2O4 50 wt%. Electrical measurements evidenced an increase in the conductivity from 4.42 10-9 S/cm for the neat PEI to 1.70 10-8 S/cm for PEI/CoFe2O4 50 wt% at 1 MHz. The subglass γ- and ß-relaxations, primary relaxation, and conductivity relaxation were also examined depending on the nanofiller content. These novel composites are investigated from the point of view of their EMI shielding properties, showing that they are capable of attenuating the electric and magnetic parts of electromagnetic waves.


Assuntos
Anestésicos Gerais , Cobalto , Condutividade Elétrica
14.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570598

RESUMO

The rapid advancement of electronic communication technology has greatly aided human productivity and quality of life, but it has also resulted in significant electromagnetic pollution issues. Traditional metals and alloys are often used for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, they have drawbacks such as being heavy, expensive, and having low corrosion resistance, which limits their application in electromagnetic shielding. Therefore, it is crucial to develop novel EMI shielding materials. Polymers, being highly flexible, corrosion-resistant, and possessing high specific strength, are frequently employed in electromagnetic shielding materials. In this review, we firstly introduce the basic theory of electromagnetic shielding. Then, we outline the processing methods and recent developments of polymer-based electromagnetic shielding composites, including uniform-, foam-, layered-, and segregated structures. Lastly, we present the challenges and prospects for the field, aiming to provide direction and inspiration for the study of polymer-based electromagnetic shielding composite materials.

15.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005369

RESUMO

Electromagnetic shielding materials are special materials that can effectively absorb and shield electromagnetic waves and protect electronic devices and electronic circuits from interference and damage by electromagnetic radiation. This paper presents the research progress of intrinsically conductive polymer materials and conductive polymer-based composites for electromagnetic shielding as well as an introduction to lightweight polymer composites with multicomponent systems. These materials have excellent electromagnetic interference shielding properties and have the advantages of electromagnetic wave absorption and higher electromagnetic shielding effectiveness compared with conventional electromagnetic shielding materials, but these materials still have their own shortcomings. Finally, the paper also discusses the future opportunities and challenges of intrinsically conductive polymers and composites containing a conductive polymer matrix for electromagnetic shielding applications.

16.
Nanotechnology ; 33(17)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038684

RESUMO

Flexible electromagnetic shielding composites have a great potential for wide range applications. In this study, two flexible composites were produced by plating Ni nanoparticles on carbon nanotubes (CNTs) or infiltrating carbon nanofibers/polydimethylsiloxane (CNF/PDMS) polymer into CNT/sodium alginate (CNT/SA) sponge skeleton (CNT/SA/CNF/PDMS composites). The composites are tested under the X band in the frequency range of 8.2 - 12.4 GHz, the electromagnetic interference shielding effectiveness (EMI-SE) values of the above two composites are almost as twice as that of CNT/SA/PDMS composite at a same CNT loading. Introducing nano-sized Ni particles on CNT improved the microwave absorption capacity of the composite, while adding CNF on the PDMS matrix enhanced the conductivity of these composites. Under 10% strain, both flexible composites show stable conductivity. Simulation and calculation results shown that increasing the cladding rate of Ni nanoparticles on the surface of CNT, reducing the average size of Ni particles, and increasing the loading of CNF in PDMS matrix can significantly improve conductivity and then EMI performance of the materials. All of these could benefit for the design of flexible electromagnetic shielding composites.

17.
Macromol Rapid Commun ; 43(9): e2100826, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257427

RESUMO

Metacomposites have attracted widespread attention due to their unique negative electromagnetic properties and stupendous applications. Although there are systems that realize metamaterial properties in low radio frequency bands, the research on the construction of polymer matrix metacomposites with negative performance in the pivotal GHz band is still undiscovered. Herein, carbon nanofiber/conductive polymer metacomposites with 3D overlapping network structures are innovatively constructed to achieve negative permittivity characteristics in the radarwave frequency range, and convenient methods for further adjusting the electromagnetic parameters is also proposed. The results show that the negative permittivity of CNFs/PANI metacomposites can be conveniently altered via adjusting PANI content. Furthermore, electromagnetic shielding has also been fully discussed as one of the most valuable applications of the metacomposites. The SET of CNFs/PANI-70 has an average value of 70 dB at 4-18 GHz and can reach a maximum of 80 dB at 4 GHz, which far exceeds the current commercial electromagnetic shielding standards. This work greatly broadens the promising application of metacomposites for perfect electromagnetic shielding, novel capacitance, and frequency selective surfaces.

18.
Nano Lett ; 21(6): 2532-2537, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683886

RESUMO

Electromagnetic interference (EMI) shielding materials with excellent EMI shielding efficiency (SE), lightweight property, and superb mechanical performance are vitally important for modern society, but it is still a challenge to realize these performances simultaneously on one material. Here, we report a sustainable bioinspired double-network structural material with excellent specific strength (146 MPa g-1 cm3) and remarkable EMI SE (100 dB) from cellulose nanofiber (CNF) and carbon nanotubes (CNTs), which demonstrates remarkable and outstanding performance to both typical metal materials and reported polymer composites. In particular, the bioinspired double-network structure design simultaneously achieves an extremely high electrical conductivity and mechanical strength, which makes it a lightweight, high shielding efficiency, and sustainable structural material for real-life electromagnetic wave shielding applications.

19.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012282

RESUMO

Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength, thermogravimetry, current-voltage measurements, shielding against electromagnetic interference, and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to 5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22 × 10-6 S/cm and 6.61 × 10-5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of -10.5 dB at 9 GHz and a value around -8.2 dB between 11 and 12 GHz. This was possibly due to the higher electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites, regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal the possibility for tailoring the properties of insulating materials for application in electrical and electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen the application range.


Assuntos
Acrilonitrila , Nanocompostos , Nanotubos de Carbono , Butadienos , Caprolactama/análogos & derivados , Condutividade Elétrica , Polímeros , Estireno
20.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162946

RESUMO

Polymeric nanocomposites (PNC) have an outstanding potential for various applications as the integrated structure of the PNCs exhibits properties that none of its component materials individually possess. Moreover, it is possible to fabricate PNCs into desired shapes and sizes, which would enable controlling their properties, such as their surface area, magnetic behavior, optical properties, and catalytic activity. The low cost and light weight of PNCs have further contributed to their potential in various environmental and industrial applications. Stimuli-responsive nanocomposites are a subgroup of PNCs having a minimum of one promising chemical and physical property that may be controlled by or follow a stimulus response. Such outstanding properties and behaviors have extended the scope of application of these nanocomposites. The present review discusses the various methods of preparation available for PNCs, including in situ synthesis, solution mixing, melt blending, and electrospinning. In addition, various environmental and industrial applications of PNCs, including those in the fields of water treatment, electromagnetic shielding in aerospace applications, sensor devices, and food packaging, are outlined.


Assuntos
Nanocompostos/química , Polímeros/química , Técnicas Biossensoriais , Embalagem de Alimentos , Tamanho da Partícula , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA