Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(7): 2384-2391, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341873

RESUMO

Ferroptosis and apoptosis are two types of regulated cell death that are closely associated with the pathophysiological processes of many diseases. The significance of ferroptosis-apoptosis crosstalk in cell fate determination has been reported, but the underlying molecular mechanisms are poorly understood. Herein mitochondria-mediated molecular crosstalk is explored. Based on a comprehensive spectroscopic investigation and mass spectrometry, cytochrome c-involved Fenton-like reactions and lipid peroxidation are revealed. More importantly, cytochrome c is found to induce ROS-independent and cardiolipin-specific lipid peroxidation depending on its redox state. In situ Raman spectroscopy unveiled that erastin can interrupt membrane permeability, specifically through cardiolipin, facilitating cytochrome c release from the mitochondria. Details of the erastin-cardiolipin interaction are determined using molecular dynamics simulations. This study provides novel insights into how molecular crosstalk occurs around mitochondrial membranes to trigger ferroptosis and apoptosis, with significant implications for the rational design of mitochondria-targeted cell death reducers in cancer therapy.


Assuntos
Ferroptose , Análise Espectral Raman , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Mitocôndrias/metabolismo , Peroxidação de Lipídeos
2.
J Biol Chem ; 299(4): 103039, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803962

RESUMO

The small molecule erastin inhibits the cystine-glutamate antiporter, system xc-, which leads to intracellular cysteine and glutathione depletion. This can cause ferroptosis, which is an oxidative cell death process characterized by uncontrolled lipid peroxidation. Erastin and other ferroptosis inducers have been shown to affect metabolism but the metabolic effects of these drugs have not been systematically studied. To this end, we investigated how erastin impacts global metabolism in cultured cells and compared this metabolic profile to that caused by the ferroptosis inducer RAS-selective lethal 3 or in vivo cysteine deprivation. Common among the metabolic profiles were alterations in nucleotide and central carbon metabolism. Supplementing nucleosides to cysteine-deprived cells rescued cell proliferation in certain contexts, showing that these alterations to nucleotide metabolism can affect cellular fitness. While inhibition of the glutathione peroxidase GPX4 caused a similar metabolic profile as cysteine deprivation, nucleoside treatment did not rescue cell viability or proliferation under RAS-selective lethal 3 treatment, suggesting that these metabolic changes have varying importance in different scenarios of ferroptosis. Together, our study shows how global metabolism is affected during ferroptosis and points to nucleotide metabolism as an important target of cysteine deprivation.


Assuntos
Cisteína , Ferroptose , Nucleotídeos , Piperazinas , Morte Celular , Cisteína/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Piperazinas/farmacologia , Nucleotídeos/metabolismo
3.
Mol Carcinog ; 63(5): 912-925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38390729

RESUMO

Golgi phosphoprotein 3 (GOLPH3) has been reported as an oncogene in various tumors; however, the role and function of GOLPH3 and its relevant molecular mechanism in cholangiocarcinoma (CCA) are unclear. Herein, GOLPH3 expression in CCA tissues was observed to be significantly higher than that in paired adjacent noncancerous tissues. Clinicopathological analysis showed that GOLPH3 expression correlated positively with the tumor-node-metastasis stage. In addition, GOLPH3 expression correlated inversely with the overall survival of patients with CCA. Multivariate analysis showed that GOLPH3 was an independent prognostic factor for patients with CCA. Transcriptome analysis (RNA sequencing) of GOLPH3 knockdown cells showed that the expression levels of nine ferroptosis-related genes were significantly changed, indicating the important biological function of GOLPH3 in ferroptosis in CCA cells. Furthermore, GOLPH3 knockdown could significantly promote Erastin-induced ferroptosis in vitro and suppress tumor growth in vivo. Overexpression of GOLPH3 had the opposite effect on this phenotype. Further studies revealed that GOLPH3 knockdown was significantly associated with a decrease in cysteine content, an accumulation of the lipid peroxidation product malondialdehyde, an increase in reactive oxygen species, and sensitized CCA cells to Erastin-induced ferroptosis. Moreover, changes in GOLPH3 expression were found to be consistent with the expression of light chain subunit solute carrier family 7 member 11 (SLC7A11). Thus, our study suggested that GOLPH3 functions as an oncoprotein in CCA and may suppress ferroptosis by facilitating SLC7A11 expression, suggesting that GOLPH3 could serve as a therapeutic target for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , Proteínas de Membrana , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Ferroptose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise Multivariada
4.
J Transl Med ; 22(1): 340, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594779

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS: In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS: This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS: Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Bioensaio , Bases de Dados Factuais , Ferroptose/genética , Neoplasias Pulmonares/genética , Ligante RANK
5.
Toxicol Appl Pharmacol ; 486: 116936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641223

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is pivotal in development, metabolic homeostasis, and immune responses. While recent research has highlighted AhR's significant role in modulating oxidative stress responses, its mechanistic relationship with ferroptosis-an iron-dependent, non-apoptotic cell death-remains to be fully elucidated. In our study, we discovered that AhR plays a crucial role in ferroptosis, in part by transcriptionally regulating the expression of the solute carrier family 7 member 11 (SLC7A11). Our findings indicate that both pharmacological inactivation and genetic ablation of AhR markedly enhance erastin-induced ferroptosis. This enhancement is achieved by suppressing SLC7A11, leading to increased lipid peroxidation. We also obtained evidence of post-translational modifications of SLC7A11 during ferroptosis. Additionally, we observed that indole 3-pyruvate (I3P), an endogenous ligand of AhR, protects cells from ferroptosis through an AhR-dependent mechanism. Based on these insights, we propose that AhR transcriptionally regulates the expression of SLC family genes, which in turn play a pivotal role in mediating ferroptosis. This underscores AhR's essential role in suppressing lipid oxidation and ensuring cell survival under oxidative stress.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Humanos , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação da Expressão Gênica , Piperazinas/farmacologia
6.
Mol Pharm ; 21(6): 2767-2780, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38736196

RESUMO

Erastin can induce ferroptosis in tumor cells as an effective small molecule inhibitor. However, its application is hampered by a lack of water solubility. This study investigated the effects of superparamagnetic iron oxide (SPIO)-erastin-polyethylene glycol (PEG) nanoparticles prepared by loading SPIO-PEG nanoparticles with erastin on ferroptosis. SPIO-erastin-PEG nanoparticles exhibited square and spherical shapes with good dispersibility. The zeta potential and hydrodynamic size of SPIO-erastin-PEG were measured as (-37.68 ± 2.706) mV and (45.75 ± 18.88) nm, respectively. On T2-weighted imaging, the nanosystem showed significant contrast enhancement compared to no-enhancement magnetic resonance imaging (MRI). SPIO-erastin-PEG induced ferroptosis by increasing reactive oxygen species and iron content and promoting the accumulation of lipid peroxides and the degradation of glutathione peroxidase 4. Pharmacokinetic experiments revealed a half-life of 1.25 ± 0.05 h for the SPIO-erastin-PEG solution in circulation. Moreover, significant antitumorigenic effects of SPIO-erastin-PEG have been demonstrated in 5-8F cells and mouse-bearing tumors. These results indicated that the synthesized SPIO-erastin-PEG nanoplatform could induce ferroptosis effects in vitro and in vivo while exhibiting favorable physical characteristics. This approach may provide a new strategy for theranostic nanoplatform for nasopharyngeal cancer.


Assuntos
Ferroptose , Neoplasias Nasofaríngeas , Polietilenoglicóis , Ferroptose/efeitos dos fármacos , Animais , Polietilenoglicóis/química , Camundongos , Humanos , Neoplasias Nasofaríngeas/tratamento farmacológico , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética/métodos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Compostos Férricos/química , Feminino , Piperazinas
7.
Connect Tissue Res ; 65(3): 202-213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578221

RESUMO

BACKGROUND: Periodontitis is a chronic destructive inflammatory disease exacerbated by osteoblast dysfunction. Ferroptosis has emerged as a significant factor that could contribute to the pathological changes observed in periodontitis. However, the impact of ferroptosis on osteogenic differentiation and gene expression patterns of primary osteoblasts remain elusive. METHODS: In this study, osteoblasts were osteogenically induced for specific durations with and without the ferroptosis inducer erastin. Subsequently, cell proliferation, ferroptosis-related molecules, and osteogenic differentiation capacity were assessed. Furthermore, the differences in transcriptome expression following erastin treatment were analyzed by RNA sequencing. RESULTS: The results demonstrated that erastin treatment induced ferroptosis, resulting in suppressed cell proliferation and impaired osteogenic differentiation. Transcriptomic analysis revealed significant alterations in processes such as hydrogen peroxide catabolism, response to lipid peroxidation, and metal iron binding, as well as BMP receptor activity and collagen type XI trimer. CONCLUSION: The ferroptosis inducer erastin inhibited osteoblast proliferation and differentiation. Our study provides novel insights into the effect of ferroptosis on osteogenesis, suggesting that targeting ferroptosis may present a promising approach in the treatment of periodontitis.


Assuntos
Diferenciação Celular , Proliferação de Células , Ferroptose , Osteoblastos , Osteogênese , Piperazinas , Ferroptose/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Animais , Piperazinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Células Cultivadas
8.
BMC Urol ; 24(1): 78, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575966

RESUMO

BACKGROUND: Few studies are focusing on the mechanism of erastin acts on prostate cancer (PCa) cells, and essential ferroptosis-related genes (FRGs) that can be PCa therapeutic targets are rarely known. METHODS: In this study, in vitro assays were performed and RNA-sequencing was used to measure the expression of differentially expressed genes (DEGs) in erastin-induced PCa cells. A series of bioinformatic analyses were applied to analyze the pathways and DEGs. RESULTS: Erastin inhibited the expression of SLC7A11 and cell survivability in LNCaP and PC3 cells. After treatment with erastin, the concentrations of malondialdehyde (MDA) and Fe2+ significantly increased, whereas the glutathione (GSH) and the oxidized glutathione (GSSG) significantly decreased in both cells. A total of 295 overlapping DEGs were identified under erastin exposure and significantly enriched in several pathways, including DNA replication and cell cycle. The percentage of LNCaP and PC3 cells in G1 phase was markedly increased in response to erastin treatment. For four hub FRGs, TMEFF2 was higher in PCa tissue and the expression levels of NRXN3, CLU, and UNC5B were lower in PCa tissue. The expression levels of SLC7A11 and cell survivability were inhibited after the knockdown of TMEFF2 in androgen-dependent cell lines (LNCaP and VCaP) but not in androgen-independent cell lines (PC3 and C4-2). The concentration of Fe2+ only significantly increased in TMEFF2 downregulated LNCaP and VCaP cells. CONCLUSION: TMEFF2 might be likely to develop into a potential ferroptosis target in PCa and this study extends our understanding of the molecular mechanism involved in erastin-affected PCa cells.


Assuntos
Ferroptose , Piperazinas , Neoplasias da Próstata , Masculino , Humanos , Androgênios , Ferroptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Próstata/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Netrina
9.
Environ Toxicol ; 39(2): 529-538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37341073

RESUMO

Ferroptosis is a novel form of programmed cell death triggered by iron-dependent lipid peroxidation and has been associated with various diseases, including cancer. Erastin, an inhibitor of system Xc-, which plays a critical role in regulating ferroptosis, has been identified as an inducer of ferroptosis in cancer cells. In this study, we investigated the impact of butyrate, a short-chain fatty acid produced by gut microbiota, on erastin-induced ferroptosis in lung cancer cells. Our results demonstrated that butyrate significantly enhanced erastin-induced ferroptosis in lung cancer cells, as evidenced by increased lipid peroxidation and reduced expression of glutathione peroxidase 4 (GPX4). Mechanistically, we found that butyrate modulated the pathway involving activating transcription factor 3 (ATF3) and solute carrier family 7 member 11 (SLC7A11), leading to enhanced erastin-induced ferroptosis. Furthermore, partial reversal of the effect of butyrate on ferroptosis was observed upon knockdown of ATF3 or SLC7A11. Collectively, our findings indicate that butyrate enhances erastin-induced ferroptosis in lung cancer cells by modulating the ATF3/SLC7A11 pathway, suggesting its potential as a therapeutic agent for cancer treatment.


Assuntos
Ferroptose , Neoplasias Pulmonares , Humanos , Fator 3 Ativador da Transcrição/metabolismo , Butiratos/farmacologia , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
10.
J Transl Med ; 21(1): 780, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924062

RESUMO

BACKGROUND: Follicular thyroid cancer (FTC) is a prevalent form of differentiated thyroid cancer, whereas anaplastic thyroid cancer (ATC) represents a rare, fast-growing, undifferentiated, and highly aggressive tumor, posing significant challenges for eradication. Ferroptosis, an iron-dependent cell death mechanism driven by the excessive production of reactive oxygen species and subsequent lipid peroxidation, emerges as a promising therapeutic strategy for cancer. It has been observed that many cancer cells exhibit sensitivity to ferroptosis, while some other histotypes appear to be resistant, by counteracting the metabolic changes and oxidative stress induced by iron overload. METHODS: Here we used human biopsies and in vitro approaches to analyse the effects of iron-dependent cell death. We assessed cell proliferation and viability through MTT turnover, clonogenic assays, and cytofluorimetric-assisted analysis. Lipid peroxidation assay and western blot were used to analyse molecular mechanisms underlying ferroptosis modulation. Two distinct thyroid cancer cell lines, FTC-133 (follicular) and 8505C (anaplastic), were utilized. These cell lines were exposed to ferroptosis inducers, Erastin and RSL3, while simulating an iron overload condition using ferric ammonium citrate. RESULTS: Our evidence suggests that FTC-133 cell line, exposed to iron overload, reduced their viability and showed increased ferroptosis. In contrast, the 8505C cell line seems to better tolerate ferroptosis, responding by modulating CD71, which is involved in iron internalization and seems to have a role in resistance to iron overload and consequently in maintaining cell viability. CONCLUSIONS: The differential tolerance to ferroptosis observed in our study may hold clinical implications, particularly in addressing the unmet therapeutic needs associated with ATC treatment, where resistance to ferroptosis appears more pronounced compared to FTC.


Assuntos
Sobrecarga de Ferro , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/complicações , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Morte Celular , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Pharmacol Res ; 193: 106779, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121496

RESUMO

Oxidative disruption of dopaminergic neurons is regarded as a crucial pathogenesis in Parkinson's disease (PD), eventually causing neurodegenerative progression. (-)-Clausenamide (Clau) is an alkaloid isolated from plant Clausena lansium (Lour.), which is well-known as a scavenger of lipid peroxide products and exhibiting neuroprotective activities both in vivo and in vitro, yet with the in-depth molecular mechanism unrevealed. In this study, we evaluated the protective effects and mechanisms of Clau on dopaminergic neuron. Our results showed that Clau directly interacted with the Ser663 of ALOX5, the PKCα-phosphorylation site, and thus prevented the nuclear translocation of ALOX5, which was essential for catalyzing the production of toxic lipids 5-HETE. LC-MS/MS-based phospholipidomics analysis demonstrated that the oxidized membrane lipids were involved in triggering ferroptotic death in dopaminergic neurons. Furthermore, the inhibition of ALOX5 was found to significantly improving behavioral defects in PD mouse model, which was confirmed associated with the effects of attenuating the accumulation of lipid peroxides and neuronal damages. Collectively, our findings provide an attractive strategy for PD therapy by targeting ALOX5 and preventing ferroptosis in dopaminergic neurons.


Assuntos
Ferroptose , Doença de Parkinson , Animais , Camundongos , Neurônios Dopaminérgicos , Cromatografia Líquida , Espectrometria de Massas em Tandem
12.
Fish Shellfish Immunol ; 133: 108556, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669600

RESUMO

Ferroptosis is an iron and oxidative dependent form of cell death usually mediated by redox related molecules in vertebrates. In the present study, a glutathione peroxidase 4 (GPX4) and a solute carrier family 7 member 11 (SLC7A11, xCT) homologues were identified from the oyster Crassostrea gigas (designed as CgGPX4 and CgxCT), which contained a GSHPx domain and an AA_permease domain, respectively. The mRNA transcripts of CgGPX4 and CgxCT were expressed in all the examined tissues, including gill, gonad, adductor muscle, labial palp, mantle, hepatopancreas and haemocytes, with the highest expression in haemocytes. After erastin treatment, the rate of cell malformation and cell death increased significantly in haemocytes, and the mitochondrial atrophy, crest loss and fracture were observed in haemocytes. While the amount of Fe2+ and Malondialdehyde (MDA) increased significantly, the mRNA expressions of CgGPX4, CgxCT and voltage-dependent anion channel 2 (CgVDAC2) in haemocytes decreased significantly after erastin treatment. These results indicated that erastin was able to induce the ferroptosis of oyster haemocytes.


Assuntos
Crassostrea , Ferroptose , Animais , Crassostrea/metabolismo , Proteínas de Transporte/metabolismo , RNA Mensageiro/metabolismo , Hemócitos/metabolismo
13.
Acta Pharmacol Sin ; 44(8): 1712-1724, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36829052

RESUMO

A number of studies have shown that aspirin, as commonly prescribed drug, prevents the development of hepatocellular carcinoma (HCC). Ferroptosis as a dynamic tumor suppressor plays a vital role in hepatocarcinogenesis. In this study we investigated whether aspirin affected ferroptosis in liver cancer cells. RNA-seq analysis revealed that aspirin up-regulated 4 ferroptosis-related drivers and down-regulated 5 ferroptosis-related suppressors in aspirin-treated HepG2 cells. Treatment with aspirin (4 mM) induced remarkable ferroptosis in HepG2 and Huh7 cells, which was enhanced by the ferroptosis inducer erastin (10 µM). We demonstrated that NF-κB p65 restricted ferroptosis in HepG2 and Huh7 cells through directly binding to the core region of SLC7A11 promoter and activating the transcription of ferroptosis inhibitor SLC7A11, whereas aspirin induced ferroptosis through inhibiting NF-κB p65-activated SLC7A11 transcription. Overexpression of p65 rescued HepG2 and Huh7 cells from aspirin-induced ferroptosis. HCC patients with high expression levels of SLC7A11 and p65 presented lower survival rate. Functionally, NF-κB p65 blocked the aspirin-induced ferroptosis in vitro and in vivo, which was attenuated by erastin. We conclude that aspirin triggers ferroptosis by restricting NF-κB-activated SLC7A11 transcription to suppress the growth of HCC. These results provide a new insight into the mechanism by which aspirin regulates ferroptosis in hepatocarcinogenesis. A combination of aspirin and ferroptosis inducer may provide a potential strategy for the treatment of HCC in clinic.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , NF-kappa B/metabolismo , Neoplasias Hepáticas/patologia , Aspirina/farmacologia , Aspirina/uso terapêutico , Linhagem Celular Tumoral , Sistema y+ de Transporte de Aminoácidos/genética
14.
Climacteric ; 26(2): 135-142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36724820

RESUMO

OBJECTIVE: Triple-negative breast cancer (TNBC) is the most malignant form of breast cancer with increasing incidence and mortality worldwide. The progesterone receptor membrane component-1 (PGRMC1) is a well-identified hormone receptor with unknown functions in TNBC. The current study aims to explore the involvement of PGRMC1 in regulation of glutathione metabolism and ferroptosis during development of TNBC, providing new therapy options for TNBC patients. METHODS: Bioinformatic analysis, cell proliferation assay, western blot assay and other biochemistry methods were performed in TNBC cells. RESULTS: Our results revealed that the expression of PGRMC1 is higher in TNBC than the other subtypes of breast cancer. Interestingly, as an iron binding protein, increased PGRMC1 expression in TNBC cells leads to resistance to ferroptosis inducer. On the contrary, silenced PGRMC1 expression enhanced sensitivity of MDA-MB231 cells to Erastin. Mechanistically, overexpression of PGRMC1 decreased the intracellular free iron concentration, which was reduced by AG205 treatment. CONCLUSIONS: PGRMC1 increases the possibility of TNBC development through binding to intracellular iron and suppressing ferroptosis, providing the molecular basis of combined treatment for TNBC.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Membrana/genética , Receptores de Progesterona
15.
Cell Mol Biol Lett ; 28(1): 36, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131152

RESUMO

BACKGROUND: Oral squamous cell carcinomas are one of the most common cancers worldwide with aggressive behavior and poor prognosis. Reactive oxygen species (ROS) are associated with cancer and cause various types of regulated cell death (RCD). Inducing the RCD pathway by modulating ROS levels is imperative to conquer cancers. The aim of this study is to investigate the synergistic anticancer effects of melatonin and erastin on ROS modulation and subsequent RCD induction. METHODS: Human tongue squamous cell carcinoma cell lines (SCC-15 cells) were treated with melatonin, erastin, or their combination. Cell viability, ROS levels, autophagy, apoptosis, and ferroptosis levels were tested according to the results of the PCR array, which were verified with/without the induction and inhibition of ROS by H2O2 and N-acetyl-L-cysteine, respectively. In addition, a mouse-based subcutaneous oral cancer xenograft model was constructed to identify the effects of melatonin, erastin, and their combination on the autophagy, apoptosis, and ferroptosis levels in isolated tumor tissues. RESULTS: ROS levels were increased by the administration of melatonin at high concentrations (mM), and the combination of melatonin with erastin enhanced the levels of malonic dialdehyde, ROS, and lipid ROS, and reduced the levels of glutamate and glutathione. SQSTM1/p62, LC3A/B, cleaved caspase-3, and PARP1 protein levels in SCC-15 cells were also increased by melatonin plus erastin treatment, which further increased as ROS accumulated, and decreased as ROS levels were suppressed. Combined treatment of melatonin and erastin markedly reduced the tumor size in vivo, demonstrated no obvious systemic side effects, and significantly enhanced the apoptosis and ferroptosis levels in the tumor tissues, in parallel with decreased autophagy levels. CONCLUSIONS: Melatonin combined with erastin exhibits synergistic anticancer effects without adverse reactions. Herein, this combination might become a promising alternative strategy for oral cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Ferroptose , Neoplasias de Cabeça e Pescoço , Melatonina , Neoplasias Bucais , Neoplasias da Língua , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Melatonina/farmacologia , Melatonina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias da Língua/patologia , Apoptose , Modelos Animais de Doenças , Autofagia
16.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175412

RESUMO

Glioblastoma multiforme (GBM) is a highly heterogeneous disease with a mesenchymal subtype tending to exhibit more aggressive and multitherapy-resistant features. Glioblastoma stem-cells derived from mesenchymal cells are reliant on iron supply, accumulated with high reactive oxygen species (ROS), and susceptible to ferroptosis. Temozolomide (TMZ) treatment is the mainstay drug for GBM despite the rapid development of resistance in mesenchymal GBM. The main interconnection between mesenchymal features, TMZ resistance, and ferroptosis are poorly understood. Herein, we demonstrated that a subunit of NADPH oxidase, CYBB, orchestrated mesenchymal shift and promoted TMZ resistance by modulating the anti-ferroptosis circuitry Nrf2/SOD2 axis. Public transcriptomic data re-analysis found that CYBB and SOD2 were highly upregulated in the mesenchymal subtype of GBM. Accordingly, our GBM cohort confirmed a high expression of CYBB in the GBM tumor and was associated with mesenchymal features and poor clinical outcome. An in vitro study demonstrated that TMZ-resistant GBM cells displayed mesenchymal and stemness features while remaining resilient to erastin-mediated ferroptosis by activating the CYBB/Nrf2/SOD2 axis. The CYBB maintained a high ROS state to sustain the mesenchymal phenotype, TMZ resistance, and reduced erastin sensitivity. Mechanistically, CYBB interacted with Nrf2 and consequently regulated SOD2 transcription. Compensatory antioxidant SOD2 essentially protected against the deleterious effect of high ROS while attenuating ferroptosis in TMZ-resistant cells. An animal study highlighted the protective role of SOD2 to mitigate erastin-triggered ferroptosis and tolerate oxidative stress burden in mice harboring TMZ-resistant GBM cell xenografts. Therefore, CYBB captured ferroptosis resilience in mesenchymal GBM. The downstream compensatory activity of CYBB via the Nrf2/SOD2 axis is exploitable through erastin-induced ferroptosis to overcome TMZ resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , NADPH Oxidase 2 , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
17.
Pharmacol Res ; 183: 106386, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933006

RESUMO

Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been made to understand iron regulation and function in health and disease. Indeed, iron is associated with both physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.


Assuntos
Ferroptose , Hematopoese Extramedular , Distúrbios do Metabolismo do Ferro , Homeostase , Humanos , Ferro/metabolismo
18.
Pharmacol Res ; 183: 106365, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901941

RESUMO

Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
19.
Acta Pharmacol Sin ; 43(1): 39-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33767380

RESUMO

Alzheimer's disease (AD) is associated with high incidence of cardiovascular events but the mechanism remains elusive. Our previous study reveals a tight correlation between cardiac dysfunction and low mitochondrial aldehyde dehydrogenase (ALDH2) activity in elderly AD patients. In the present study we investigated the effect of ALDH2 overexpression on cardiac function in APP/PS1 mouse model of AD. Global ALDH2 transgenic mice were crossed with APP/PS1 mutant mice to generate the ALDH2-APP/PS1 mutant mice. Cognitive function, cardiac contractile, and morphological properties were assessed. We showed that APP/PS1 mice displayed significant cognitive deficit in Morris water maze test, myocardial ultrastructural, geometric (cardiac atrophy, interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies along with oxidative stress, apoptosis, and inflammation in myocardium. ALDH2 transgene significantly attenuated or mitigated these anomalies. We also noted the markedly elevated levels of lipid peroxidation, the essential lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4), the transcriptional regulator for ACLS4 special protein 1 (SP1) and ferroptosis, evidenced by elevated NCOA4, decreased GPx4, and SLC7A11 in myocardium of APP/PS1 mutant mice; these effects were nullified by ALDH2 transgene. In cardiomyocytes isolated from WT mice and in H9C2 myoblasts in vitro, application of Aß (20 µM) decreased cell survival, compromised cardiomyocyte contractile function, and induced lipid peroxidation; ALDH2 transgene or activator Alda-1 rescued Aß-induced deteriorating effects. ALDH2-induced protection against Aß-induced lipid peroxidation was mimicked by the SP1 inhibitor tolfenamic acid (TA) or the ACSL4 inhibitor triacsin C (TC), and mitigated by the lipid peroxidation inducer 5-hydroxyeicosatetraenoic acid (5-HETE) or the ferroptosis inducer erastin. These results demonstrate an essential role for ALDH2 in AD-induced cardiac anomalies through regulation of lipid peroxidation and ferroptosis.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Coenzima A Ligases/metabolismo , Modelos Animais de Doenças , Presenilina-1/metabolismo , Doença de Alzheimer/patologia , Animais , Relação Dose-Resposta a Droga , Ferroptose , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Contração Miocárdica , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555529

RESUMO

Ferroptosis is a regulated cell death process characterised by the iron-dependent accumulation of oxidised polyunsaturated fatty acid-containing phospholipids. Its initiation is complicated and involves reactive oxygen species (ROS) and a loss of the activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). These play critical roles in the development of ferroptotic cell damage by lipid peroxidation. Antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of ferroptosis. This study was designed to demonstrate the protective effect of ferulic acid (FA) against oxidative stress and erastin-mediated ferroptosis in murine MIN6 cells. Cells were treated with FA or its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) and 20 µM of erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), ROS levels were determined by a dihydrodichlorofluorescein (H2DCF) cell-permeant probe, and glutathione and lipid peroxidation were assayed with commercially available kits. The phenolic acids enhanced cell viability in erastin-treated MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron and ROS, glutathione (GSH) depletion, and lipid peroxidation (p < 0.05) compared to cells that were protected by co-treatment with FA or FAS. The treatment of MIN6 cells with FA or FAS following exposure to erastin increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) protein levels. Consequently, levels of its downstream antioxidant proteins, HO-1, NQO1, GCLC, and GPX4, increased. FA and FAS greatly decreased erastin-induced ferroptosis in the presence of the Nrf2 inhibitor, ML385, through the regulation of Nrf2 response genes. In conclusion, these results show that FA and FAS protect MIN6 cells from erastin-induced ferroptosis by the Nrf2 antioxidant protective mechanism.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Antioxidantes/farmacologia , Glutationa/metabolismo , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA