Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 223(11): 1953-1964, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32989463

RESUMO

BACKGROUND: Targeting multiple key antigens that mediate distinct Plasmodium falciparum erythrocyte invasion pathways is an attractive approach for the development of blood-stage malaria vaccines. However, the challenge is to identify antigen cocktails that elicit potent strain-transcending parasite-neutralizing antibodies efficacious at low immunoglobulin G concentrations feasible to achieve through vaccination. Previous reports have screened inhibitory antibodies primarily against well adapted laboratory parasite clones. However, validation of the parasite-neutralizing efficacy against clinical isolates with minimal in vitro cultivation is equally significant to better ascertain their prospective in vivo potency. METHODS: We evaluated the parasite-neutralizing activity of different antibodies individually and in combinations against laboratory adapted clones and clinical isolates. Clinical isolates were collected from Central India and Mozambique, Africa, and characterized for their invasion properties and genetic diversity of invasion ligands. RESULTS: In our portfolio, we evaluated 25 triple antibody combinations and identified the MSP-Fu+CyRPA+RH5 antibody combination to elicit maximal parasite neutralization against P. falciparum clinical isolates with variable properties that underwent minimal in vitro cultivation. CONCLUSIONS: The MSP-Fu+CyRPA+RH5 combination exhibited highly robust parasite neutralization against P. falciparum clones and clinical isolates, thus substantiating them as promising candidate antigens and establishing a proof of principle for the development of a combinatorial P. falciparum blood-stage malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas , Malária Falciparum , Anticorpos Antiprotozoários , Eritrócitos/imunologia , Humanos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estudos Prospectivos , Proteínas de Protozoários/imunologia
2.
Proc Natl Acad Sci U S A ; 114(45): 12045-12050, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078270

RESUMO

A highly effective vaccine would be a valuable weapon in the drive toward malaria elimination. No such vaccine currently exists, and only a handful of the hundreds of potential candidates in the parasite genome have been evaluated. In this study, we systematically evaluated 29 antigens likely to be involved in erythrocyte invasion, an essential developmental stage during which the malaria parasite is vulnerable to antibody-mediated inhibition. Testing antigens alone and in combination identified several strain-transcending targets that had synergistic combinatorial effects in vitro, while studies in an endemic population revealed that combinations of the same antigens were associated with protection from febrile malaria. Video microscopy established that the most effective combinations targeted multiple discrete stages of invasion, suggesting a mechanistic explanation for synergy. Overall, this study both identifies specific antigen combinations for high-priority clinical testing and establishes a generalizable approach that is more likely to produce effective vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Linhagem Celular , Eritrócitos/imunologia , Eritrócitos/parasitologia , Células HEK293 , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Estudos Prospectivos , Proteínas de Protozoários/imunologia
3.
J Cell Sci ; 129(1): 228-42, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604223

RESUMO

Microscopy-based localisation of proteins during malaria parasite (Plasmodium) invasion of the erythrocyte is widely used for tentative assignment of protein function. To date, however, imaging has been limited by the rarity of invasion events and the poor resolution available, given the micron size of the parasite, which leads to a lack of quantitative measures for definitive localisation. Here, using computational image analysis we have attempted to assign relative protein localisation during invasion using wide-field deconvolution microscopy. By incorporating three-dimensional information we present a detailed assessment of known parasite effectors predicted to function during entry but as yet untested or for which data are equivocal. Our method, termed longitudinal intensity profiling, resolves confusion surrounding the localisation of apical membrane antigen 1 (AMA1) at the merozoite-erythrocyte junction and predicts that the merozoite thrombospondin-related anonymous protein (MTRAP) is unlikely to play a direct role in the mechanics of entry, an observation supported with additional biochemical evidence. This approach sets a benchmark for imaging of complex micron-scale events and cautions against simplistic interpretations of small numbers of representative images for the assignment of protein function or prioritisation of candidates as therapeutic targets.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Imageamento Tridimensional , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Actinas/metabolismo , Anticorpos Antiprotozoários/metabolismo , Especificidade de Anticorpos , Epitopos/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Humanos , Merozoítos/metabolismo , Modelos Biológicos , Estrutura Terciária de Proteína , Transporte Proteico , Junções Íntimas/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(4): 1179-84, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583518

RESUMO

Erythrocyte invasion by Plasmodium falciparum merozoites is a highly intricate process in which Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an indispensable parasite ligand that binds with its erythrocyte receptor, Basigin. PfRH5 is a leading blood-stage vaccine candidate because it exhibits limited polymorphisms and elicits potent strain-transcending parasite neutralizing antibodies. However, the mechanism by which it is anchored to the merozoite surface remains unknown because both PfRH5 and the PfRH5-interacting protein (PfRipr) lack transmembrane domains and GPI anchors. Here we have identified a conserved GPI-linked parasite protein, Cysteine-rich protective antigen (CyRPA) as an interacting partner of PfRH5-PfRipr that tethers the PfRH5/PfRipr/CyRPA multiprotein complex on the merozoite surface. CyRPA was demonstrated to be GPI-linked, localized in the micronemes, and essential for erythrocyte invasion. Specific antibodies against the three proteins successfully detected the intact complex in the parasite and coimmunoprecipitated the three interacting partners. Importantly, full-length CyRPA antibodies displayed potent strain-transcending invasion inhibition, as observed for PfRH5. CyRPA does not bind with erythrocytes, suggesting that its parasite neutralizing antibodies likely block its critical interaction with PfRH5-PfRipr, leading to a blockade of erythrocyte invasion. Further, CyRPA and PfRH5 antibody combinations produced synergistic invasion inhibition, suggesting that simultaneous blockade of the PfRH5-Basigin and PfRH5/PfRipr/CyRPA interactions produced an enhanced inhibitory effect. Our discovery of the critical interactions between PfRH5, PfRipr, and the GPI-anchored CyRPA clearly defines the components of the essential PfRH5 adhesion complex for P. falciparum erythrocyte invasion and offers it as a previously unidentified potent target for antimalarial strategies that could abrogate formation of the crucial multiprotein complex.


Assuntos
Anticorpos Antiprotozoários/química , Proteínas de Transporte , Eritrócitos/parasitologia , Proteínas Ligadas por GPI , Complexos Multiproteicos , Plasmodium falciparum , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Ratos
5.
Malar J ; 15: 161, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979066

RESUMO

BACKGROUND: The pathogenesis of malaria is primarily associated with blood-stage infection and there is strong evidence that antibodies specific for parasite blood-stage antigens can control parasitaemia. This provides a strong rationale for incorporation of asexual blood-stage antigen components into an effective multivalent malaria subunit vaccine. On the basis of available genome-wide transcriptomic and proteomic data, previously uncharacterized Plasmodium falciparum open reading frames were screened for new blood stage vaccine candidates. This has led to the identification of the cysteine-rich protective antigen (PfCyRPA), which forms together with PfRH5 and PfRipr a multiprotein complex that is crucial for erythrocyte invasion. METHODS: Glycosylated and non-glycosylated variants of recombinant PfCyRPA were expressed and produced as secreted protein in mammalian cells. Adjuvanted formulations of purified PfCyRPA were tested to assess whether they can effectively elicit parasite inhibitory antibodies, and to investigate whether or not the glycosylation status affects antibody binding. For this purpose, two sets of PfCyRPA-specific mouse monoclonal antibodies (mAbs) have been raised and evaluated for functional activity. RESULTS: Generated PfCyRPA-specific mAbs, irrespective of the immunogen's glycosylation status, showed substantial parasite in vitro growth-inhibitory activity due to inhibition of erythrocyte invasion by merozoites. Furthermore, passive immunization experiments in P. falciparum infected NOD-scid IL2Rγ (null) mice engrafted with human erythrocytes demonstrated potent in vivo growth-inhibitory activity of generated mAbs. CONCLUSIONS: Recombinantly expressed PfCyRPA tested as adjuvanted vaccine formulations in mice elicited antibodies that significantly inhibit P. falciparum asexual blood stage parasite growth both in vitro and in vivo. These findings render PfCyRPA a promising blood-stage candidate antigen for inclusion into a multicomponent malaria subunit vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antiprotozoários/isolamento & purificação , Antígenos de Protozoários/administração & dosagem , Vacinas Antimaláricas/administração & dosagem , Camundongos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
6.
J Infect Dis ; 212(8): 1288-97, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25838264

RESUMO

BACKGROUND: Plasmodium falciparum invades human erythrocytes by using an array of ligands that interact with several receptors, including sialic acid (SA), complement receptor 1 (CR1), and basigin. We hypothesized that in malaria-endemic areas, parasites vary invasion pathways under immune pressure. Therefore, invasion mechanisms of clinical isolates collected from 3 zones of Ghana with different levels of endemicity (from lowest to highest, Accra, Navrongo, and Kintampo) were compared using standardized methods. METHODS: Blood samples were collected from children aged 2-14 years in whom malaria was diagnosed, and erythrocyte invasion phenotypes were determined using the enzymes neuraminidase, chymotrypsin, and trypsin, which differentially cleave receptors from the erythrocyte surface. In addition, antibodies against CR1 and basigin were used to determine the contributions of these receptors to invasion. Gene expression levels of P. falciparum invasion ligands were also examined. RESULTS: The parasites generally expressed SA-independent invasion phenotypes across the malaria-endemic areas, with parasites from Kintampo showing the highest invasion rates in neuraminidase-treated erythrocytes. CR1 was a major mediator of SA-independent invasion, while basigin was essential for both SA-dependent and SA-independent invasion mechanisms. Furthermore, expression of the basigin ligand PfRh5 was the best predictor of donor parasitemia. CONCLUSIONS: Erythrocyte invasion phenotypes expressed by P. falciparum are influenced by endemicity levels, and the PfRh5-basigin pathway is a potential vaccine target.


Assuntos
Proteínas de Transporte/imunologia , Doenças Endêmicas , Eritrócitos/parasitologia , Malária Falciparum/imunologia , Ácido N-Acetilneuramínico/imunologia , Plasmodium falciparum/imunologia , Adolescente , Basigina/imunologia , Criança , Pré-Escolar , Feminino , Gana/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Neuraminidase/imunologia , Neuraminidase/metabolismo , Parasitemia , Plasmodium falciparum/genética , Receptores de Complemento 3b/imunologia
7.
Protein Expr Purif ; 95: 188-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24380803

RESUMO

Plasmodium falciparum Erythrocyte Binding Antigen 175 (PfEBA-175) engages Glycophorin A (GpA) on erythrocytes during malaria infection. The two Duffy binding like domains (F1 and F2) of PfEBA-175 that form region II (RII) are necessary for binding GpA, and are the target of neutralizing antibodies. Recombinant production of RII in Pichia pastoris and baculovirus has required mutations to prevent aberrant glycosylation or deglycosylation resulting in modifications to the protein surface that may affect antibody recognition and binding. In this study, we developed a recombinant system in Escherichia coli to obtain RII and F2 without mutations or glycosylation through oxidative refolding. The system produced refolded protein with high yields and purity, and without the need for mutations or deglycosylation. Biophysical characterization indicated both proteins are well behaved and correctly folded. We also demonstrate the recombinant proteins are functional, and develop a quantitative functional flow cytometry binding assay for erythrocyte binding ideally suited to measure inhibition by antibodies and inhibitors. This assay showed far greater binding of RII to erythrocytes over F2 and that binding of RII is inhibited by a neutralizing antibody and sialyllactose, while galactose had no effect on binding. These studies form the framework to measure inhibition by antibodies and small molecules that target PfEBA-175 in a rapid and quantitative manner using RII that is unmodified or mutated. This approach has significant advantages over current methods for examining receptor-ligand interactions and is applicable to other erythrocyte binding proteins used by the parasite.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/genética , Ligação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Baculoviridae/genética , Baculoviridae/metabolismo , Eritrócitos/metabolismo , Escherichia coli , Humanos , Pichia/genética , Pichia/metabolismo , Redobramento de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Acta Trop ; 260: 107379, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245156

RESUMO

The extent of parasite adaptive capability involved in erythrocyte invasion represents a significant challenge for the development of a Plasmodium falciparum vaccine. The parasite's geographical and populational origin may influence such adaptive behaviour; in vitro culture-adapted parasite strains are typically used for such studies. Previous studies have reported invasion phenotypes in strains from Africa and Asia and, to a lesser extent, from Latin America. This study was aimed at expanding the pool of characterised parasite strains from Latin America by describing the invasion phenotype of the P. falciparum Colombia Bogotá 2 (FCB2) strain. The FCB2 genome was sequenced and erythrocyte invasion ligand sequences were analysed and compared to other previously reported ones. RT-PCR was used for assessing Pfeba family erythrocyte invasion ligands and reticulocyte binding homologue (Pfrh) gene transcription. A flow cytometry-based erythrocyte invasion assay (using enzymatically-treated erythrocytes) was used for determining the FCB2 strain's invasion phenotype. The P. falciparum FCB2 genome sequence was analysed, bearing in mind that prolonged in vitro parasite culture may affect its genome sequence and, in some cases, lead to the deletion of certain genes; it was demonstrated that all erythrocyte invasion ligand gene sequences studied here were preserved. Comparative analysis showed that the target genome sequences were conserved whereas transcriptional analysis highlighted Pfebas and Pfrhs gene expression. Erythrocyte invasion analysis demonstrated that the FCB2 strain has a sialic acid-resistant invasion phenotype.

9.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Assuntos
Eritrócitos , Plasmodium falciparum , Polissacarídeos , Proteínas de Protozoários , Humanos , Antígenos de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
10.
Exp Parasitol ; 135(1): 42-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792005

RESUMO

Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species.


Assuntos
Actinas/metabolismo , Babesia/enzimologia , Babesia/fisiologia , Eritrócitos/parasitologia , Frutose-Bifosfato Aldolase/metabolismo , Actinas/química , Animais , Babesia/efeitos dos fármacos , Citocalasina D/farmacologia , DNA Complementar/isolamento & purificação , DNA de Protozoário/isolamento & purificação , Feminino , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Cinética , Camundongos , Camundongos Endogâmicos ICR , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fases de Leitura Aberta/genética , Polimerização , Proteínas de Protozoários/metabolismo
11.
Trends Parasitol ; 39(3): 160-162, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682939

RESUMO

The Plasmodium falciparum invasion complex - consisting of the prime blood-stage vaccine candidates PfRH5, PfCyRPA and PfRipr - is essential and conserved. New data from Scally et al. reveal that the complex consists of two additional proteins, adding important knowledge to the current understanding of the biology behind the invasion process.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/metabolismo , Proteínas de Transporte/metabolismo , Anticorpos Antiprotozoários , Eritrócitos , Malária Falciparum/prevenção & controle
12.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824754

RESUMO

Plasmodium vivax uses Duffy binding protein (PvDBP1) to bind to the Duffy Antigen-Chemokine Receptor (DARC) to invade human erythrocytes. Individuals who lack DARC expression (Duffy-negative) are thought to be resistance to P. vivax. In recent years, P. vivax malaria is becoming more prevalent in Africa with a portion of these cases detected in Duffy-negatives. Apart from DBP1, members of the reticulocyte binding protein (RBP) and tryptophan-rich antigen (TRAg) families may also play a role in erythrocyte invasion. While the transcriptomes of the Southeast Asian and South American P. vivax are well documented, the gene expression profile of P. vivax in Africa and more specifically the expression level of several erythrocyte binding gene candidates as compared to DBP1 are largely unknown. This paper characterized the first P. vivax transcriptome in Africa and compared with those from the Southeast Asian and South American isolates. The expression of 4,404 gene transcripts belong to 12 functional groups including 43 specific erythrocyte binding gene candidates were examined. Overall, there were 10-26% differences in the gene expression profile amongst the geographical isolates, with the Ethiopian and Cambodian P. vivax being most similar. Majority of the gene transcripts involved in protein transportation, housekeeping, and host interaction were highly transcribed in the Ethiopian P. vivax. Erythrocyte binding genes including PvRBP2a and PvRBP3 expressed six-fold higher than PvDBP1and 60-fold higher than PvEBP/DBP2. Other genes including PvRBP1a, PvMSP3.8, PvMSP3.9, PvTRAG2, PvTRAG14, and PvTRAG22 also showed relatively high expression. Differential expression was observed among geographical isolates, e.g., PvDBP1 and PvEBP/DBP2 were highly expressed in the Cambodian but not the Brazilian and Ethiopian isolates, whereas PvRBP2a and PvRBP2b showed higher expression in the Ethiopian and Cambodian than the Brazilian isolates. Compared to Pvs25, the standard biomarker for detecting female gametocytes, PvAP2-G (PVP01_1440800), GAP (PVP01_1403000), and Pvs47 (PVP01_1208000) were highly expressed across geographical samples. These findings provide an important baseline for future comparisons of P. vivax transcriptomes from Duffy-negative infections and highlight potential biomarkers for improved gametocyte detection.

13.
Parasitol Int ; 86: 102479, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628068

RESUMO

Plasmodium, the causative agents of malaria, are obligate intracellular organisms. In humans, pathogenesis is caused by the blood stage parasite, which multiplies within erythrocytes, thus erythrocyte invasion is an essential developmental step. Merozoite form parasites released into the blood stream coordinately secrets a panel of proteins from the microneme secretory organelles for gliding motility, establishment of a tight junction with a target naive erythrocyte, and subsequent internalization. A protein identified in Toxoplasma gondii facilitates microneme fusion with the plasma membrane for exocytosis; namely, acylated pleckstrin homology domain-containing protein (APH). To obtain insight into the differential microneme discharge by malaria parasites, in this study we analyzed the consequences of APH deletion in the rodent malaria model, Plasmodium yoelii, using a DiCre-based inducible knockout method. We found that APH deletion resulted in a reduction in parasite asexual growth and erythrocyte invasion, with some parasites retaining the ability to invade and grow without APH. APH deletion impaired the secretion of microneme proteins, MTRAP and AMA1, and upon contact with erythrocytes the secretion of MTRAP, but not AMA1, was observed. APH-deleted merozoites were able to attach to and deform erythrocytes, consistent with the observed MTRAP secretion. Tight junctions were formed, but echinocytosis after merozoite internalization into erythrocytes was significantly reduced, consistent with the observed absence of AMA1 secretion. Together with our observation that APH largely colocalized with MTRAP, but less with AMA1, we propose that APH is directly involved in MTRAP secretion; whereas any role of APH in AMA1 secretion is indirect in Plasmodium.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Plasmodium yoelii/genética , Proteínas de Protozoários/genética , Acilação , Antígenos de Protozoários/metabolismo , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo
14.
Front Cell Infect Microbiol ; 12: 979693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237421

RESUMO

Francisella tularensis is a gram negative, intracellular pathogen that is the causative agent of the potentially fatal disease, tularemia. During infection, F. tularensis is engulfed by and replicates within host macrophages. Additionally, this bacterium has also been shown to invade human erythrocytes and, in both cases, the Type Six Secretion System (T6SS) is required for these host-pathogen interaction. One T6SS effector protein, PdpC, is important for macrophage infection, playing a role in phagolysosomal escape and intracellular replication. To determine if PdpC also plays a role in erythrocyte invasion, we constructed a pdpC-null mutant in the live vaccine strain, F. tularensis LVS. We show that PdpC is required for invasion of human and sheep erythrocytes during in vitro assays and that reintroduction of a copy of pdpC, in trans, rescues this phenotype. The interaction with human erythrocytes was further characterized using double-immunofluorescence microscopy to show that PdpC is required for attachment of F. tularensis LVS to erythrocytes as well as invasion. To learn more about the role of PdpC in erythrocyte invasion we generated a strain of F. tularensis LVS expressing pdpC-emgfp. PdpC-EmGFP localizes as discrete foci in a subset of F. tularensis LVS cells grown in broth culture and accumulates in erythrocytes during invasion assays. Our results are the first example of a secreted effector protein of the T6SS shown to be involved in erythrocyte invasion and indicate that PdpC is secreted into erythrocytes during invasion.


Assuntos
Francisella tularensis , Tularemia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas , Eritrócitos , Humanos , Ovinos , Tularemia/microbiologia , Vacinas Atenuadas
15.
Front Microbiol ; 13: 1022828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386653

RESUMO

Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.

16.
Eur J Med Chem ; 214: 113253, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610028

RESUMO

The emerging resistance to combination therapies comprised of artemisinin derivatives has driven a need to identify new antimalarials with novel mechanisms of action. Central to the survival and proliferation of the malaria parasite is the invasion of red blood cells by Plasmodium merozoites, providing an attractive target for novel therapeutics. A screen of the Medicines for Malaria Venture Pathogen Box employing transgenic P. falciparum parasites expressing the nanoluciferase bioluminescent reporter identified the phenylsulfonyl piperazine class as a specific inhibitor of erythrocyte invasion. Here, we describe the optimization and further characterization of the phenylsulfonyl piperazine class. During the optimization process we defined the functionality required for P. falciparum asexual stage activity and determined the alpha-carbonyl S-methyl isomer was important for antimalarial potency. The optimized compounds also possessed comparable activity against multidrug resistant strains of P. falciparum and displayed weak activity against sexual stage gametocytes. We determined that the optimized compounds blocked erythrocyte invasion consistent with the asexual activity observed and therefore the phenylsulfonyl piperazine analogues described could serve as useful tools for studying Plasmodium erythrocyte invasion.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Células Hep G2 , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperazinas/síntese química , Piperazinas/química , Solubilidade , Relação Estrutura-Atividade
17.
Exp Biol Med (Maywood) ; 246(1): 10-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019810

RESUMO

IMPACT STATEMENT: Plasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Sequência Conservada , Humanos , Estágios do Ciclo de Vida , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Ratos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Frações Subcelulares/metabolismo
18.
Front Cell Infect Microbiol ; 11: 680136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322397

RESUMO

Circulating red blood cells consist of young erythrocytes (early and late reticulocytes) and mature erythrocytes (normocytes). The human malaria parasites, Plasmodium falciparum and P. vivax, have a preference to invade reticulocytes during blood-stage infection. Rodent malaria parasites that also prefer reticulocytes could be useful tools to study human malaria reticulocyte invasion. However, previous tropism studies of rodent malaria are inconsistent from one another, making it difficult to compare cell preference of different parasite species and strains. In vivo measurements of cell tropism are also subjected to many confounding factors. Here we developed an ex vivo tropism assay for rodent malaria with highly purified fractions of murine reticulocytes and normocytes. We measured invasion into the different erythrocyte populations using flow cytometry and evaluated the tropism index of the parasite strains. We found that P. berghei ANKA displayed the strongest reticulocyte preference, followed by P. yoelii 17X1.1, whereas P. chabaudi AS and P. vinckei S67 showed mixed tropism. These preferences are intrinsic and were maintained at different reticulocyte and normocyte availabilities. Our study shed light on the true erythrocyte preference of the parasites and paves the way for future investigations on the receptor-ligand interactions mediating erythrocyte tropism.


Assuntos
Malária , Roedores , Animais , Eritrócitos , Camundongos , Reticulócitos , Tropismo
19.
Elife ; 102021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393463

RESUMO

Malaria parasites use the RhopH complex for erythrocyte invasion and channel-mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they interact and traffic through subcellular sites to serve these essential functions is unknown. We show that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1 stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and predicted transmembrane helices shielded. We propose a large protein complex stabilized for trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling smaller two-state pore-forming proteins in other organisms.


Malaria is an infectious disease caused by the family of Plasmodium parasites, which pass between mosquitoes and animals to complete their life cycle. With one bite, mosquitoes can deposit up to one hundred malaria parasites into the human skin, from where they enter the bloodstream. After increasing their numbers in liver cells, the parasites hijack, invade and remodel red blood cells to create a safe space to grow and mature. This includes inserting holes in the membrane of red blood cells to take up nutrients from the bloodstream. A complex of three tightly bound RhopH proteins plays an important role in these processes. These proteins are unique to malaria parasites, and so far, it has been unclear how they collaborate to perform these specialist roles. Here, Schureck et al. have purified the RhopH complex from Plasmodium-infected human blood to determine its structure and reveal how it moves within an infected red blood cell. Using cryo-electron microscopy to visualise the assembly in fine detail, Schureck et al. showed that the three proteins bind tightly to each other over large areas using multiple anchor points. As the three proteins are produced, they assemble into a complex that remains dissolved and free of parasite membranes until the proteins have been delivered to their target red blood cells. Some hours after delivery, specific sections of the RhopH complex are inserted into the red blood cell membrane to produce pores that allow them to take up nutrients and to grow. The study of Schureck et al. provides important new insights into how the RhopH complex serves multiple roles during Plasmodium infection of human red blood cells. The findings provide a framework for the development of effective antimalarial treatments that target RhopH proteins to block red blood cell invasion and nutrient uptake.


Assuntos
Eritrócitos/parasitologia , Genes de Protozoários/fisiologia , Plasmodium falciparum/fisiologia , Família Multigênica/fisiologia , Nutrientes/metabolismo , Plasmodium falciparum/genética
20.
Trends Parasitol ; 36(6): 545-559, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32359873

RESUMO

Despite ongoing efforts, a highly effective vaccine against Plasmodium falciparum remains elusive. Vaccines targeting the pre-erythrocytic stages of the P. falciparum life cycle are the most advanced to date, affording moderate levels of efficacy in field trials. However, the discovery that the members of the merozoite PfRH5-PfCyRPA-PfRipr (RCR) complex are capable of inducing strain-transcendent neutralizing antibodies has renewed enthusiasm for the possibility of preventing disease by targeting the parasite during the blood stage of infection. With Phase I/II clinical trials now underway using first-generation vaccines against PfRH5, and more on the horizon for PfCyRPA and PfRipr, this review explores the rationale and future potential of the RCR complex as a P. falciparum vaccine target.


Assuntos
Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos de Protozoários/imunologia , Proteínas de Transporte/imunologia , Ensaios Clínicos como Assunto , Malária/imunologia , Plasmodium falciparum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA