Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2403434121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024110

RESUMO

The properties of excitons, or correlated electron-hole pairs, are of paramount importance to optoelectronic applications of materials. A central component of exciton physics is the electron-hole interaction, which is commonly treated as screened solely by electrons within a material. However, nuclear motion can screen this Coulomb interaction as well, with several recent studies developing model approaches for approximating the phonon screening of excitonic properties. While these model approaches tend to improve agreement with experiment, they rely on several approximations that restrict their applicability to a wide range of materials, and thus far they have neglected the effect of finite temperatures. Here, we develop a fully first-principles, parameter-free approach to compute the temperature-dependent effects of phonon screening within the ab initio [Formula: see text]-Bethe-Salpeter equation framework. We recover previously proposed models of phonon screening as well-defined limits of our general framework, and discuss their validity by comparing them against our first-principles results. We develop an efficient computational workflow and apply it to a diverse set of semiconductors, specifically AlN, CdS, GaN, MgO, and [Formula: see text]. We demonstrate under different physical scenarios how excitons may be screened by multiple polar optical or acoustic phonons, how their binding energies can exhibit strong temperature dependence, and the ultrafast timescales on which they dissociate into free electron-hole pairs.

2.
Proc Natl Acad Sci U S A ; 121(35): e2401644121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178234

RESUMO

Excitons are the neutral quasiparticles that form when Coulomb interactions create bound states between electrons and holes. Due to their bosonic nature, excitons are expected to condense and exhibit superfluidity at sufficiently low temperatures. In interacting Chern insulators, excitons may inherit the nontrivial topology and quantum geometry from the underlying electron wavefunctions. We theoretically investigate the excitonic bound states and superfluidity in flat-band insulators pumped with light. We find that the exciton wavefunctions exhibit vortex structures in momentum space, with the total vorticity being equal to the difference of Chern numbers between the conduction and valence bands. Moreover, both the exciton binding energy and the exciton superfluid density are proportional to the Brillouin-zone average of the quantum metric and the Coulomb potential energy per unit cell. Spontaneous emission of circularly polarized light from radiative decay is a detectable signature of the exciton vorticity. We propose that the vorticity can also be experimentally measured via the nonlinear anomalous Hall effect, whereas the exciton superfluidity can be detected by voltage-drop quantization through a combination of quantum geometry and Aharonov-Casher effect. Topological excitons and their superfluid phase could be realized in flat bands of twisted Van der Waals heterostructures.

3.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227945

RESUMO

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Assuntos
Prótons , Protetores Solares , Catecóis , Humanos , Melaninas , Solventes
4.
Proc Natl Acad Sci U S A ; 119(32): e2203531119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921437

RESUMO

We show that a Bose-Einstein condensate consisting of dark excitons forms in GaAs coupled quantum wells at low temperatures. We find that the condensate extends over hundreds of micrometers, well beyond the optical excitation region, and is limited only by the boundaries of the mesa. We show that the condensate density is determined by spin-flipping collisions among the excitons, which convert dark excitons into bright ones. The suppression of this process at low temperature yields a density buildup, manifested as a temperature-dependent blueshift of the exciton emission line. Measurements under an in-plane magnetic field allow us to preferentially modify the bright exciton density and determine their role in the system dynamics. We find that their interaction with the condensate leads to its depletion. We present a simple rate-equations model, which well reproduces the observed temperature, power, and magnetic-field dependence of the exciton density.

5.
Proc Natl Acad Sci U S A ; 119(30): e2205845119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858431

RESUMO

Layered bosonic dipolar fluids have been suggested to host a condensate of interlayer molecular bound states. However, experimental observation has remained elusive. Motivated by two recent experimental works [C. Hubert et al., Phys. Rev. X9, 021026 (2019) and D. J. Choksy et al., Phys. Rev. B 103, 045126 (2021)], we theoretically study, using numerically exact quantum Monte Carlo calculations, the experimental signatures of collective interlayer pairing in vertically stacked indirect exciton (IX) layers. We find that IX energy shifts associated with each layer evolve nontrivially as a function of density imbalance following a nonmonotonic trend with a jump discontinuity at density balance, identified with the interlayer IX molecule gap. This behavior discriminates between the superfluidity of interlayer bound pairs and independent dipole condensation in distinct layers. Considering finite temperature and finite density imbalance conditions, we find a cascade of Berezinskii-Kosterlitz-Thouless (BKT) transitions, initially into a pair superfluid and only then, at lower temperatures, into complete superfluidity of both layers. Our results may provide a theoretical interpretation of existing experimental observations in GaAs double quantum well (DQW) bilayer structures. Furthermore, to optimize the visibility of pairing dynamics in future studies, we present an analysis suggesting realistic experimental settings in GaAs and transition metal dichalcogenide (TMD) bilayer DQW heterostructures where collective interlayer pairing and pair superfluidity can be clearly observed.

6.
Nano Lett ; 24(28): 8671-8678, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975929

RESUMO

Manipulation of physical properties in multidimensional tunable moiré superlattice systems is a key focus in nanophotonics, especially for interlayer excitons (IXs) in two-dimensional materials. However, the impact of defects on IXs remains unclear. Here, we thoroughly study the optical properties of WS2/WSe2 heterobilayers with varying defect densities. Low-temperature photoluminescence (PL) characterizations reveal that the low-energy IXs are more susceptible to defects compared to the high-energy IXs. The low-energy IXs also show much faster PL quenching rate with temperature, faster peak width broadening rate with laser power, shorter lifetime, and lower circular polarization compared to the low-energy IXs in the region with fewer defects. These effects are attributed to the combined effects of increased electron scattering, exciton-phonon interactions, and nonradiative channels introduced by the defects. Our findings aid in optimizing moiré superlattice structures.

7.
Nano Lett ; 24(7): 2273-2281, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38261782

RESUMO

Plexcitons constitute a peculiar example of light-matter hybrids (polaritons) originating from the (strong) coupling of plasmonic modes and molecular excitations. Here we propose a fully quantum approach to model plexcitonic systems and test it against existing experiments on peculiar hybrids formed by Au nanoparticles and a well-known porphyrin derivative, involving the Q branch of the organic dye absorption spectrum. Our model extends simpler descriptions of polaritonic systems to account for the multilevel structure of the dyes, spatially varying interactions with a given plasmon mode, and the simultaneous occurrence of plasmon-molecule and intermolecular interactions. By keeping a molecularly detailed view, we were able to gain insights into the local structure and individual contributions to the resulting plexcitons. Our model can be applied to rationalize and predict energy funneling toward specific molecular sites within a plexcitonic assembly, which is highly valuable for designing and controlling chemical transformations in the new polaritonic landscapes.

8.
Nano Lett ; 24(38): 11882-11888, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284001

RESUMO

Twisted bilayers host many emergent phenomena in which the electronic excitations (quasiparticles, QPs) are closely intertwined with the local stacking order. By inspecting twisted hexagonal boron nitride (t-hBN), we show that nonlocal long-range interactions in large twisted systems cannot be reliably described by the local (high-symmetry) stacking and that the band gap variation (typically associated with the moiré excitonic potential) shows multiple minima with variable depth depending on the twist angle. We investigate twist angles of 2.45°, 2.88°, 3.48°, and 5.09° using the GW approximation together with stochastic compression to analyze the QP state interactions. We find that band-edge QP hybridization is suppressed for intermediate angles that exhibit two distinct local minima in the moiré potential (at AA region and saddle point (SP)) which become degenerate for the largest system (2.45°).

9.
Nano Lett ; 24(35): 11124-11131, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39171793

RESUMO

Two-dimensional metal halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for the tunability of mechanical and optoelectronic properties. The band-edge emission is defined by the structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and what kind of phonons are involved are still under debate. Here we investigate the emission, reflectance, and phonon response from single two-dimensional lead iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of low-frequency phonons with nonorthogonal directionality contribute to the band-edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design polarization properties.

10.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855978

RESUMO

Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe2 and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity. We show that spatial modulation of the dielectric environment within the photonic crystal unit cell results in the formation of two distinct excitonic species with significantly different nonlinear responses of the corresponding charged exciton-polaritons under optical pumping. This behavior enables optical switching with ultrashort laser pulses and can be sensitively controlled via an electrostatic gate voltage. Our results open new avenues toward the development of active polaritonic devices in a compact chip-compatible implementation.

11.
Nano Lett ; 24(31): 9459-9467, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39042710

RESUMO

Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.

12.
Nano Lett ; 24(6): 2057-2062, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38285001

RESUMO

Hyperbolic polaritons have been attracting increasing interest for applications in optoelectronics, biosensing, and super-resolution imaging. Here, we report the in-plane hyperbolic exciton polaritons in monolayer black-arsenic (B-As), where hyperbolicity arises strikingly from two exciton resonant peaks. Remarkably, the presence of two resonances at different momenta makes overall hyperbolicity highly tunable by strain, as the two exciton peaks can be merged into the same frequency to double the strength of hyperbolicity as well as light absorption under a 1.5% biaxial strain. Moreover, the frequency of the merged hyperbolicity can be further tuned from 1.35 to 0.8 eV by an anisotropic biaxial strain. Furthermore, electromagnetic numerical simulation reveals a strain-induced hyperbolicity, as manifested in a topological transition of iso-frequency contour of exciton polaritons. The good tunability, large exciton binding energy, and strong light absorption exhibited in the hyperbolic monolayer B-As make it highly suitable for nanophotonics applications under ambient conditions.

13.
Nano Lett ; 24(15): 4319-4329, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567828

RESUMO

The discovery of magnetic order at the 2D limit has sparked new exploration of van der Waals magnets for potential use in spintronics, magnonics, and quantum information applications. However, many of these materials feature low magnetic ordering temperatures and poor air stability, limiting their fabrication into practical devices. In this Mini-Review, we present a promising material for fundamental studies and functional use: CrSBr, an air-stable, two-dimensional magnetic semiconductor. Our discussion highlights experimental research on bulk CrSBr, including quasi-1D semiconducting properties, A-type antiferromagnetic order (TN = 132 K), and strong coupling between its electronic and magnetic properties. We then discuss the behavior of monolayer and few-layer flakes and present a perspective on promising avenues for further studies on CrSBr.

14.
Nano Lett ; 24(33): 10258-10264, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39134480

RESUMO

The moiré potential in rotationally misfit two-dimensional (2D) heterostructures has been used to build artificial exciton and electron lattices, which have become platforms for realizing exotic electronic phases. Here, we demonstrate a different approach to create a superlattice potential in 2D crystals by using the near field of an array of polar molecules. A bilayer of titanyl phthalocyanine (TiOPc), consisting of alternating out-of-plane dipoles, is deposited on monolayer MoS2. Time-resolved two-photon photoemission spectroscopy reveals a pair of interlayer exciton states with an energy difference of ∼0.1 eV, which is consistent with the electrostatic potential modulation induced by the TiOPc bilayer as determined by density functional theory calculations. Because the symmetry and the period of this potential superlattice can be changed readily by using molecules of different shapes and sizes, molecule/2D heterostructures can be promising platforms for designing artificial exciton and electron lattices.

15.
Nano Lett ; 24(21): 6225-6232, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752702

RESUMO

Magnetic proximity interaction provides a promising route to manipulate the spin and valley degrees of freedom in van der Waals heterostructures. Here, we report a control of valley pseudospin in the WS2/MoSe2 heterostructure by utilizing the magnetic proximity effect of few-layered CrBr3 and, for the first time, observe a substantial difference in valley polarization of intra/interlayer excitons under different circularly polarized laser excitations, referred to as chirality-dependent valley polarization. Theoretical and experimental results reveal that the spin-selective charge transfer between MoSe2 and CrBr3, as well as between MoSe2 and WS2, is mostly responsible for the chiral feature of valley polarization in comparison with the proximity exchange field. This means that a long-distance manipulation of exciton behaviors in multilayer heterostructures can be achieved through spin-selective charge transfer. This work marks a significant advancement in the control of spin and valley pseudospin in multilayer structures.

16.
Nano Lett ; 24(23): 7077-7083, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828922

RESUMO

The study of exciton polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here, through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons for 2s excitons in WSe2/graphene heterostructures, where the excited exciton states (2s) in the WSe2 layer are dressed by free charge carriers of the adjacent graphene layer in the Landau quantization regime. First, such a system enables an optical detection of integer and fractional quantum Hall states (e.g., ν = ±1/3, ±2/3) of monolayer graphene. Furthermore, we observe that the 2s state evolves into two distinct branches, denoted as attractive and repulsive polarons, when graphene is doped out of the incompressible quantum Hall gaps. Our work paves the way for the understanding of the excited composite quasiparticles and Bose-Fermi mixtures.

17.
Nano Lett ; 24(31): 9575-9582, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051155

RESUMO

Interlayer excitons (IXs) in van der Waals heterostructures with static out of plane dipole moment and long lifetime show promise in the development of exciton based optoelectronic devices and the exploration of many body physics. However, these IXs are not always observed, as the emission is very sensitive to lattice mismatch and twist angle between the constituent materials. Moreover, their emission intensity is very weak compared to that of corresponding intralayer excitons at room temperature. Here we report the room-temperature realization of twist angle independent momentum direct IX in the heterostructures of bulk PbI2 and bilayer WS2. Momentum conserving transitions combined with the large band offsets between the constituent materials enable intense IX emission at room temperature. A long lifetime (∼100 ns), noticeable Stark shift, and tunability of IX emission from 1.70 to 1.45 eV by varying the number of WS2 layers make these heterostructures promising to develop room temperature exciton based optoelectronic devices.

18.
Nano Lett ; 24(26): 8030-8037, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912680

RESUMO

Dielectric screening plays a vital role in determining physical properties at the nanoscale and affects our ability to detect and characterize nanomaterials using optical techniques. We study how dielectric screening changes electromagnetic fields and many-body effects in nanostructures encapsulated inside carbon nanotubes. First, we show that metallic outer walls reduce the scattering intensity of the inner tube by 2 orders of magnitude compared to that of air-suspended inner tubes, in line with our local field calculations. Second, we find that the dielectric shift of the optical transition energies in the inner walls is greater when the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons in small-diameter inner metallic tubes are thermally dissociated at room temperature if the outer tube is also metallic, and in essence, we observe band-to-band transitions in thin metallic double-walled nanotubes.

19.
Nano Lett ; 24(2): 667-671, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174941

RESUMO

We present a first-principles many-body perturbation theory study of nitrophenyl-doped (6,5) single-walled nanotubes (SWCNTs) to understand how sp3 doping impacts the excitonic properties. sp3-doped SWCNTs are promising as a class of optoelectronic materials with bright tunable photoluminescence, long spin coherence, and single-photon emission (SPE), motivating the study of spin excitations. We predict that the dopant results in a single unpaired spin localized around the defect site, which induces multiple low-energy excitonic peaks. By comparing optical absorption and photoluminescence from experiment and theory, we identify the transitions responsible for the red-shifted, defect-induced E11* peak, which has demonstrated SPE for some dopants; the presence of this state is due to both the symmetry-breaking associated with the defect and the presence of the defect-induced in-gap state. Furthermore, we find an asymmetry between the contribution of the two spin channels, suggesting that this system has potential for spin-selective optical transitions.

20.
Nano Lett ; 24(4): 1431-1438, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252694

RESUMO

Transition metal dichalcogenides (TMDCs) have garnered considerable interest over the past decade as a class of semiconducting layered materials. Most studies on the carrier dynamics in these materials have focused on the monolayer due to its direct bandgap, strong photoluminescence, and strongly bound excitons. However, a comparative understanding of the carrier dynamics in multilayer (e.g., >10 layers) flakes is still absent. Recent computational studies have suggested that excitons in bulk TMDCs are confined to individual layers, leading to room-temperature stable exciton populations. Using this new context, we explore the carrier dynamics in MoSe2 flakes that are between ∼16 and ∼125 layers thick. We assign the kinetics to exciton-exciton annihilation (EEA) and Shockley-Read-Hall recombination of free carriers. Interestingly, the average observed EEA rate constant (0.003 cm2/s) is nearly independent of flake thickness and 2 orders of magnitude smaller than that of an unencapsulated monolayer (0.33 cm2/s) but very similar to values observed in encapsulated monolayers. Thus, we posit that strong intralayer interactions minimize the effect of layer thickness on recombination dynamics, causing the multilayer to behave like the monolayer and exhibit an apparent EEA rate intrinsic to MoSe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA