Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.019
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Network ; : 1-22, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860469

RESUMO

Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.

2.
Sensors (Basel) ; 24(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39409277

RESUMO

The reliable operation of scroll compressors is crucial for the efficiency of rotating machinery and refrigeration systems. To address the need for efficient and accurate fault diagnosis in scroll compressor technology under varying operating states, diverse failure modes, and different operating conditions, a multi-branch convolutional neural network fault diagnosis method (SSG-Net) has been developed. This method is based on the Swin Transformer, the Global Attention Mechanism (GAM), and the ResNet architecture. Initially, the one-dimensional time-series signal is converted into a two-dimensional image using the Short-Time Fourier Transform, thereby enriching the feature set for deep learning analysis. Subsequently, the method integrates the window attention mechanism of the Swin Transformer, the 2D convolution of GAM attention, and the shallow ResNet's two-dimensional convolution feature extraction branch network. This integration further optimizes the feature extraction process, enhancing the accuracy of fault feature recognition and sensitivity to data variability. Consequently, by combining the global and local features extracted from these three branch networks, the model significantly improves feature representation capability and robustness. Finally, experimental results on scroll compressor datasets and the CWRU dataset demonstrate diagnostic accuracies of 97.44% and 99.78%, respectively. These results surpass existing comparative models and confirm the model's superior recognition precision and rapid convergence capabilities in complex fault environments.

3.
Sensors (Basel) ; 24(19)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39409431

RESUMO

Coupling faults that simultaneously occur during the operation of mechanical equipment are widespread. These faults encompass a diverse range of high-order coupling relationships, involving multiple base fault types. Based on the advantages of hypergraphs for higher-order relationship descriptions, two coupling fault diagnosis architectures based on the hypergraph neural network are proposed in this paper: 1. In the coupling fault diagnosis framework based on feature generation, the base faults serve as the hypergraph nodes, and each hyperedge connects the base faults. The generator, which consists of the hypergraph neural network, generates coupling faults as negative samples to enforce regularization constraints for the discriminator training. 2. In the coupling fault diagnosis framework based on feature extraction, each node represents a fault mode, and each hyperedge connects nodes with common failure modes. The multi-head attention mechanism extracts the features of base faults, and the common fault features in a hyperedge are aggregated via the hypergraph neural network. The inner product correlation is used to diagnose the fault modes. The results show that the diagnostic accuracy for coupling faults with the two frameworks reaches 88.6% and 86.76%, respectively. Both frameworks can be used for the diagnosis and analysis of high-order coupling faults.

4.
Sensors (Basel) ; 24(19)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39409488

RESUMO

Rolling bearings often produce non-stationary signals that are easily obscured by noise, particularly in high-noise environments, making fault detection a challenging task. To address this challenge, a novel fault diagnosis approach based on the Kolmogorov-Arnold Network-based Hypergraph Message Passing (KAN-HyperMP) model is proposed. The KAN-HyperMP model is composed of three key components: a neighbor feature aggregation block, a feature fusion block, and a KANLinear block. Firstly, the neighbor feature aggregation block leverages hypergraph theory to integrate information from more distant neighbors, aiding in the reduction of noise impact, even when nearby neighbors are severely affected. Subsequently, the feature fusion block combines the features of these higher-order neighbors with the target node's own features, enabling the model to capture the complete structure of the hypergraph. Finally, the smoothness properties of B-spline functions within the Kolmogorov-Arnold Network (KAN) are employed to extract critical diagnostic features from noisy signals. The proposed model is trained and evaluated on the Southeast University (SEU) and Jiangnan University (JNU) Datasets, achieving accuracy rates of 99.70% and 99.10%, respectively, demonstrating its effectiveness in fault diagnosis under both noise-free and noisy conditions.

5.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894114

RESUMO

Ensuring the smooth operation of rolling bearings requires a precise fault diagnosis. Particularly, identifying fault types under varying working conditions holds significant importance in practical engineering. Thus, we propose a reinforcement ensemble method for diagnosing rolling bearing faults under varying working conditions. Firstly, a reinforcement model was designed to select the optimal base learner. Stratified random sampling was used to extract four datasets from raw training data. The reinforcement model was trained by these four datasets, respectively, and we obtained four optimal base learners. Then, a sparse ANN was designed as the ensemble model and the reinforcement learning model that can successfully identify the fault type under variable work conditions was constructed. Extensive experiments were conducted, and the results demonstrate the superiority of the proposed method over other intelligent approaches, with significant practical engineering benefits.

6.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894172

RESUMO

Currently, many fault diagnosis methods for rolling bearings based on deep learning are facing two main challenges. Firstly, the deep learning model exhibits poor diagnostic performance and limited generalization ability in the presence of noise signals and varying loads. Secondly, there is incomplete utilization of fault information and inadequate extraction of fault features, leading to the low diagnostic accuracy of the model. To address these problems, this paper proposes an improved dual-branch convolutional capsule neural network for rolling bearing fault diagnosis. This method converts the collected bearing vibration signals into grayscale images to construct a grayscale image dataset. By fully considering the types of bearing faults and damage diameters, the data are labeled using a dual-label format. A multi-scale convolution module is introduced to extract features from the data and maximize feature information extraction. Additionally, a coordinate attention mechanism is incorporated into this module to better extract useful channel features and enhance feature extraction capability. Based on adaptive fusion between fault type (damage diameter) features and labels, a dual-branch convolutional capsule neural network model for rolling bearing fault diagnosis is established. The model was experimentally validated using both Case Western Reserve University's bearing dataset and self-made datasets. The experimental results demonstrate that the fault type branch of the model achieves an accuracy rate of 99.88%, while the damage diameter branch attains an accuracy rate of 99.72%. Both branches exhibit excellent classification performance and display robustness against noise interference and variable working conditions. In comparison with other algorithm models cited in the reference literature, the diagnostic capability of the model proposed in this study surpasses them. Furthermore, the generalization ability of the model is validated using a self-constructed laboratory dataset, yielding an average accuracy rate of 94.25% for both branches.

7.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065843

RESUMO

This paper investigates the problem of synthesizing network attacks against fault diagnosis in the context of discrete event systems (DESs). It is assumed that the sensor observations sent to the operator that monitors a system are tampered with by an active attacker. We first formulate the process of online fault diagnosis under attack. Then, from the attack viewpoint, we define a sensor network attacker as successful if it can degrade the fault diagnosis in the case of maintaining itself as undiscovered by the operator. To verify such an attacker, an information structure called a joint diagnoser (JD) is proposed, which describes all possible attacks in a given attack scenario. Based on the refined JD, i.e., stealthy joint diagnoser (SJD), we present an algorithmic procedure for synthesizing a successful attacker if it exists.

8.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001056

RESUMO

In the process of metal wire and additive manufacturing, due to changes in temperature, humidity, current, voltage, and other parameters, as well as the failure of machinery and equipment, a failure may occur in the manufacturing process that seriously affects the current situation of production efficiency and product quality. Based on the demand for monitoring of the key impact parameters of additive manufacturing, this paper develops a parameter monitoring and prediction system for the additive manufacturing feeding process to provide a basis for future fault diagnosis. The fault diagnosis and prediction system for metal wire supply and additive manufacturing utilizes STM 32 as its core, enabling the capture and transmission of temperature, humidity, current, and voltage data. The upper computer system, designed on the LabVIEW 2019 virtual instrument platform, incorporates an LSTM neural network model and facilitates a connection between LabVIEW and MATLAB 2019 to achieve the prediction function. The monitoring and prediction system established in this study is intended to provide basic research assistance in the field of fault diagnosis.

9.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001135

RESUMO

Mechanical equipment is composed of several parts, and the interaction between parts exists throughout the whole life cycle, leading to the widespread phenomenon of fault coupling. The diagnosis of independent faults cannot meet the requirements of the health management of mechanical equipment under actual working conditions. In this paper, the dynamic vertex interpretable graph neural network (DIGNN) is proposed to solve the problem of coupling fault diagnosis, in which dynamic vertices are defined in the data topology. First, in the date preprocessing phase, wavelet transform is utilized to make input features interpretable and reduce the uncertainty of model training. In the fault topology, edge connections are made between nodes according to the fault coupling information, and edge connections are established between dynamic nodes and all other nodes. Second the data topology with dynamic vertices is used in the training phase and in the testing phase, the time series data are only fed into dynamic vertices for classification and analysis, which makes it possible to realize coupling fault diagnosis in an industrial production environment. The features extracted in different layers of DIGNN interpret how the model works. The method proposed in this paper can realize the accurate diagnosis of independent faults in the dataset with an accuracy of 100%, and can effectively judge the coupling mode of coupling faults with a comprehensive accuracy of 88.3%.

10.
Sensors (Basel) ; 24(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338887

RESUMO

Fault diagnosis is vital for improving the reliability and safety of mechanical equipment. Existing fault diagnosis methods require a large number of samples for model training. However, in real-world environments, mechanical equipment usually operates under healthy conditions during most of its service life, resulting in a scarcity of fault samples. To solve this problem, a novel multilayer fusion correntropy representation method combined with a support vector machine is proposed for the fault diagnosis of mechanical equipment. First, the monitoring signal is expanded into multilayer signal components using wavelet packet decomposition. Then, the correlation between the signal components of each layer is expressed by correntropy, and the corresponding correntropy matrix is constructed. After performing the matrix logarithm operator, all correntropy matrices composed of correntropy values are fused into a vector, which is viewed as a feature of the signal. Finally, a support vector machine is established using small samples to realize fault classification. The effectiveness of the proposed method is validated on four public datasets. The results indicate that compared with other methods, the proposed method has advantages in terms of diagnosis accuracy and noise immunity ability.

11.
Sensors (Basel) ; 24(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123933

RESUMO

With the development of precision sensing instruments and data storage devices, the fusion of multi-sensor data in gearbox fault diagnosis has attracted much attention. However, existing methods have difficulty in capturing the local temporal dependencies of multi-sensor monitoring information, and the inescapable noise severely decreases the accuracy of multi-sensor information fusion diagnosis. To address these issues, this paper proposes a fault diagnosis method based on dynamic graph convolutional neural networks and hard threshold denoising. Firstly, considering that the relationships between monitoring data from different sensors change over time, a dynamic graph structure is adopted to model the temporal dependencies of multi-sensor data, and, further, a graph convolutional neural network is constructed to achieve the interaction and feature extraction of temporal information from multi-sensor data. Secondly, to avoid the influence of noise in practical engineering, a hard threshold denoising strategy is designed, and a learnable hard threshold denoising layer is embedded into the graph neural network. Experimental fault datasets from two typical gearbox fault test benches under environmental noise are used to verify the effectiveness of the proposed method in gearbox fault diagnosis. The experimental results show that the proposed DDGCN method achieves an average diagnostic accuracy of up to 99.7% under different levels of environmental noise, demonstrating good noise resistance.

12.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931516

RESUMO

The increasing deployment of industrial robots in manufacturing requires accurate fault diagnosis. Online monitoring data typically consist of a large volume of unlabeled data and a small quantity of labeled data. Conventional intelligent diagnosis methods heavily rely on supervised learning with abundant labeled data. To address this issue, this paper presents a semi-supervised Informer algorithm for fault diagnosis modeling, leveraging the Informer model's long- and short-term memory capabilities and the benefits of semi-supervised learning to handle the diagnosis of a small amount of labeled data alongside a substantial amount of unlabeled data. An experimental study is conducted using real-world industrial robot monitoring data to assess the proposed algorithm's effectiveness, demonstrating its ability to deliver accurate fault diagnosis despite limited labeled samples.

13.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475114

RESUMO

The efficient and accurate identification of diaphragm pump faults is crucial for ensuring smooth system operation and reducing energy consumption. The structure of diaphragm pumps is complex and using traditional fault diagnosis strategies to extract typical fault characteristics is difficult, facing the risk of model overfitting and high diagnostic costs. In response to the shortcomings of traditional methods, this study innovatively combines signal demodulation methods with residual networks (ResNet) to propose an efficient fault diagnosis strategy for diaphragm pumps. By using a demodulation method based on principal component analysis (PCA), the vibration signal demodulation spectrum of the fault condition is obtained, the typical fault characteristics of the diaphragm pump are accurately extracted, and the sample features are enhanced, reducing the cost of fault diagnosis. Afterward, the PCA-ResNet model is applied to the fault diagnosis of diaphragm pumps. A reasonable model structure and advanced residual block design can effectively reduce the risk of model overfitting and improve the accuracy of fault diagnosis. Compared with the visual geometry group (VGG) 16, VGG19, ResNet50, and autoencoder models, the proposed model has improved accuracy by 35.89%, 80.27%, 2.72%, and 6.12%. Simultaneously, it has higher operational efficiency and lower loss rate, solving the problem of diagnostic lag in practical engineering. Finally, a model optimization strategy is proposed through model evaluation metrics and testing. The reasonable parameter range of the model is obtained, providing a reference and guarantee for further optimization of the model.

14.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676060

RESUMO

Vibration monitoring is one of the most effective approaches for bearing fault diagnosis. Within this category of techniques, sparsity constraint-based regularization has received considerable attention for its capability to accurately extract repetitive transients from noisy vibration signals. The optimal solution of a sparse regularization problem is determined by the regularization term and the data fitting term in the cost function according to their weights, so a tradeoff between sparsity and data fidelity has to be made inevitably, which restricts conventional regularization methods from maintaining strong sparsity-promoting capability and high fitting accuracy at the same time. To address the limitation, a stepwise sparse regularization (SSR) method with an adaptive sparse dictionary is proposed. In this method, the bearing fault diagnosis is modeled as a multi-parameter optimization problem, including time indexes of the sparse dictionary and sparse coefficients. Firstly, sparsity-enhanced optimization is conducted by amplifying the regularization parameter, making the time indexes and the number of atoms adaptively converge to the moments when impulses occur and the number of impulses, respectively. Then, fidelity-enhanced optimization is carried out by removing the regularization term, thereby obtaining the high-precision reconstruction amplitudes. Simulations and experiments verify that the reconstruction accuracy of the SSR method outperforms other sparse regularization methods under most noise conditions, and thus the proposed method can provide more accurate results for bearing fault diagnosis.

15.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676063

RESUMO

In the process of the intelligent inspection of belt conveyor systems, due to problems such as its long duration, the large number of rollers, and the complex working environment, fault diagnosis by acoustic signals is easily affected by signal coupling interference, which poses a great challenge to selecting denoising methods of signal preprocessing. This paper proposes a novel wavelet threshold denoising algorithm by integrating a new biparameter and trisegment threshold function. Firstly, we elaborate on the mutual influence and optimization process of two adjustment parameters and three wavelet coefficient processing intervals in the BT-WTD (the biparameter and trisegment of wavelet threshold denoising, BT-WTD) denoising model. Subsequently, the advantages of the proposed threshold function are theoretically demonstrated. Finally, the BT-WTD algorithm is applied to denoise the simulation signals and the vibration and acoustic signals collected from the belt conveyor experimental platform. The experimental results indicate that this method's denoising effectiveness surpasses that of traditional threshold function denoising algorithms, effectively addressing the denoising preprocessing of idler roller fault signals under strong noise backgrounds while preserving useful signal features and avoiding signal distortion problems. This research lays the theoretical foundation for the non-contact intelligent fault diagnosis of future inspection robots based on acoustic signals.

16.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676192

RESUMO

A new method based on a digital twin is proposed for fault diagnosis, in order to compensate for the shortcomings of the existing methods for fault diagnosis modeling, including the single fault type, low similarity, and poor visual effect of state monitoring. First, a fault diagnosis test platform is established to analyze faults under constant and variable speed conditions. Then, the obtained data are integrated into the Unity3D platform to realize online diagnosis and updated with real-time working status data. Finally, an industrial test of the digital twin model is conducted, allowing for its comparison with other advanced methods in order to verify its accuracy and application feasibility. It was found that the accuracy of the proposed method for the entire reducer was 99.5%, higher than that of other methods based on individual components (e.g., 93.5% for bearings, 96.3% for gear shafts, and 92.6% for shells).

17.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257508

RESUMO

The power system, as a core component of a launch vehicle, has a crucial impact on the reliability and safety of a rocket launch. Due to the limited measurement information inside the engine, it is often challenging to realize fast and accurate anomaly detection. For this reason, this paper introduces the rocket flight state data to expand the information source for anomaly detection. However, engine measurement and rocket flight state information have different data distribution characteristics. To find the optimal data fusion scheme for anomaly detection, a data set information fusion algorithm based on convex optimization is proposed, which solves the optimal fusion parameter using the convex quadratic programming problem and then adopts the adaptive CUSUM algorithm to realize the fast and accurate anomaly detection of engine faults. Numerical simulation tests show that the algorithm proposed in this paper has a higher detection accuracy and lower detection time than the traditional algorithm.

18.
Sensors (Basel) ; 24(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794088

RESUMO

Gearboxes operate in challenging environments, which leads to a heightened incidence of failures, and ambient noise further compromises the accuracy of fault diagnosis. To address this issue, we introduce a fault diagnosis method that employs singular value decomposition (SVD) and graph Fourier transform (GFT). Singular values, commonly employed in feature extraction and fault diagnosis, effectively encapsulate various fault states of mechanical equipment. However, prior methods neglect the inter-relationships among singular values, resulting in the loss of subtle fault information concealed within. To precisely and effectively extract subtle fault information from gear vibration signals, this study incorporates graph signal processing (GSP) technology. Following SVD of the original vibration signal, the method constructs a graph signal using singular values as inputs, enabling the capture of topological relationships among these values and the extraction of concealed fault information. Subsequently, the graph signal undergoes a transformation via GFT, facilitating the extraction of fault features from the graph spectral domain. Ultimately, by assessing the Mahalanobis distance between training and testing samples, distinct defect states are discerned and diagnosed. Experimental results on bearing and gear faults demonstrate that the proposed method exhibits enhanced robustness to noise, enabling accurate and effective diagnosis of gearbox faults in environments with substantial noise.

19.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610336

RESUMO

This research focuses on leveraging wavelet transform for fault classification within electrical power transmission networks. This study meticulously examines the influence of various parameters, such as fault resistance, fault inception angle, fault location, and other essential components, on the accuracy of fault classification. We endeavor to explore the interplay between classification accuracy and the input data while assessing the efficacy of combining wavelet analysis with deep learning methodologies. The data, sourced from network recorders, including phase currents and voltages, undergo a scaled continuous wavelet transform (S-CWT) to generate scalogram images. These images are subsequently utilized as inputs for pretrained deep learning models. The experiments encompass various fault scenarios, spanning distinct fault types, locations, times, and resistance values. A remarkable feature of the proposed work is the attainment of 100% classification accuracy, obviating the need for additional algorithmic enhancements. The foundation of this achievement is the deliberate selection of the right input. The decision to employ an identical number of samples as the number of scales for the CWT emerges as a pivotal factor. This approach underpins the high accuracy and renders supplementary algorithms superfluous. Furthermore, this research underscores the versatility of this approach, showcasing its effectiveness across diverse networks and scenarios. Wavelet transform, after rigorous experimentation, emerges as a reliable tool for capturing transient fault characteristics with an optimal balance between time and frequency resolutions.

20.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339497

RESUMO

As the operational status of aircraft engines evolves, their fault modes also undergo changes. In response to the operational degradation trend of aircraft engines, this paper proposes an aircraft engine fault diagnosis model based on 1DCNN-BiLSTM with CBAM. The model can be directly applied to raw monitoring data without the need for additional algorithms to extract fault degradation features. It fully leverages the advantages of 1DCNN in extracting local features along the spatial dimension and incorporates CBAM, a channel and spatial attention mechanism. CBAM could assign higher weights to features relevant to fault categories and make the model pay more attention to them. Subsequently, it utilizes BiLSTM to handle nonlinear time feature sequences and bidirectional contextual feature information. Finally, experimental validation is conducted on the publicly available CMAPSS dataset from NASA, categorizing fault modes into three types: faultless, HPC fault (the single fault), and HPC&Fan fault (the mixed fault). Comparative analysis with other models reveals that the proposed model has a higher classification accuracy, which is of practical significance in improving the reliability of aircraft engine operations and for Remaining Useful Life (RUL) prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA