Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.632
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 731: 150383, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024977

RESUMO

(R)-selective transaminases have the potential to act as efficient biocatalysts for the synthesis of important pharmaceutical intermediates. However, their low catalytic efficiency and unfavorable equilibrium limit their industrial application. Seven (R)-selective transaminases were identified using homologous sequence mining. Beginning with the optimal candidate from Mycolicibacterium hippocampi, virtual mutagenesis and substrate tunnel engineering were performed to improve catalytic efficiency. The obtained variant, T282S/Q137E, exhibited 3.68-fold greater catalytic efficiency (kcat/Km) than the wild-type enzyme. Using substrate fed-batch and air sweeping processes, effective conversion of 100 mM 4-hydroxy-2-butanone was achieved with a conversion rate of 93 % and an ee value > 99.9 %. This study provides a basis for mutation of (R)-selective transaminases and offers an efficient biocatalytic process for the asymmetric synthesis of (R)-3-aminobutanol.


Assuntos
Engenharia de Proteínas , Transaminases , Transaminases/metabolismo , Transaminases/genética , Transaminases/química , Engenharia de Proteínas/métodos , Especificidade por Substrato , Sítios de Ligação , Biocatálise , Mutagênese , Mutagênese Sítio-Dirigida , Modelos Moleculares , Burkholderiaceae/enzimologia , Burkholderiaceae/genética , Cinética
2.
Chembiochem ; 25(9): e202400006, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457364

RESUMO

High cell density cultivation is an established method for the production of various industrially important products such as recombinant proteins. However, these protocols are not always suitable for biocatalytic processes as the focus often lies on biomass production rather than high specific activities of the enzyme inside the cells. In contrast, a range of shake flask protocols are well known with high specific activities but rather low cell densities. To overcome this gap, we established a tailor-made fed-batch protocol combining both aspects: high cell density and high specific activities of heterologously produced enzyme. Using the example of an industrially relevant amine transaminase from Bacillus megaterium, we describe a strategy to optimize the cultivation yield based on the feed rate, IPTG concentration, and post-induction temperature. By adjusting these key parameters, we were able to increase the specific activity by 2.6-fold and the wet cell weight by even 17-fold compared to shake flasks. Finally, we were able to verify our established protocol by transferring it to another experimenter. With that, our optimization strategy can serve as a template for the production of high titers of heterologously produced, active enzymes and might enable the availability of these catalysts for upscaling biocatalytic processes.


Assuntos
Bacillus megaterium , Escherichia coli , Transaminases , Bacillus megaterium/enzimologia , Bacillus megaterium/metabolismo , Transaminases/metabolismo , Transaminases/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Aminas/metabolismo , Aminas/química , Biocatálise
3.
Metab Eng ; 81: 238-248, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160746

RESUMO

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Assuntos
Corynebacterium glutamicum , Fermentação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico , Ácido Poliglutâmico/genética , Ligases/metabolismo , Glucose/metabolismo
4.
Metab Eng ; 85: 105-115, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047893

RESUMO

Cysteine and cystine are essential amino acids present in mammalian cell cultures. While contributing to biomass synthesis, recombinant protein production, and antioxidant defense mechanisms, cysteine poses a major challenge in media formulations owing to its poor stability and oxidation to cystine, a cysteine dimer. Due to its poor solubility, cystine can cause precipitation of feed media, formation of undesired products, and consequently, reduce cysteine bioavailability. In this study, a highly soluble cysteine containing dipeptide dimer, Ala-Cys-Cys-Ala (ACCA), was evaluated as a suitable alternative to cysteine and cystine in CHO cell cultures. Replacing cysteine and cystine in basal medium with ACCA did not sustain cell growth. However, addition of ACCA at 4 mM and 8 mM to basal medium containing cysteine and cystine boosted cell growth up to 15% and 27% in CHO-GS and CHO-K1 batch cell cultures respectively and led to a proportionate increase in IgG titer. 13C-Metabolic flux analysis revealed that supplementation of ACCA reduced glycolytic fluxes by 20% leading to more efficient glucose metabolism in CHO-K1 cells. In fed-batch cultures, ACCA was able to replace cysteine and cystine in feed medium. Furthermore, supplementation of ACCA at high concentrations in basal medium eliminated the need for any cysteine equivalents in feed medium and increased cell densities and viabilities in fed-batch cultures without any significant impact on IgG charge variants. Taken together, this study demonstrates the potential of ACCA to improve CHO cell growth, productivity, and metabolism while also facilitating the formulation of cysteine- and cystine-free feed media. Such alternatives to cysteine and cystine will pave the way for enhanced biomanufacturing by increasing cell densities in culture and extending the storage of highly concentrated feed media as part of achieving intensified bioproduction processes.

5.
Biotechnol Bioeng ; 121(2): 696-709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994547

RESUMO

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão
6.
Biotechnol Bioeng ; 121(4): 1244-1256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192095

RESUMO

During the scale-up of biopharmaceutical production processes, insufficiently predictable performance losses may occur alongside gradients and heterogeneities. To overcome such performance losses, tools are required to explain, predict, and ultimately prohibit inconsistencies between laboratory and commercial scale. In this work, we performed CHO fed-batch cultivations in the single multicompartment bioreactor (SMCB), a new scale-down reactor system that offers new access to study large-scale heterogeneities in mammalian cell cultures. At volumetric power inputs of 20.4-1.5 W m-3, large-scale characteristics like long mixing times and dissolved oxygen (DO) heterogeneities were mimicked in the SMCB. Compared to a reference bioreactor (REFB) set-up, the conditions in the SMCB provoked an increase in lactate accumulation of up to 87%, an increased glucose uptake, and reduced viable cell concentrations in the stationary phase. All are characteristic for large-scale performance. The unique possibility to distinguish between the effects of changing power inputs and observed heterogeneities provided new insights into the potential reasons for altered product quality attributes. Apparently, the degree of galactosylation in the evaluated glycan patterns changed primarily due to the different power inputs rather than the provoked heterogeneities. The SMCB system could serve as a potent tool to provide new insights into scale-up behavior and to predict cell line-specific drawbacks at an early stage of process development.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Cricetinae , Linhagem Celular , Células CHO , Cricetulus , Oxigênio
7.
Biotechnol Bioeng ; 121(3): 1102-1117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151906

RESUMO

Large-scale fermentation processes involve complex dynamic interactions between mixing, reaction, mass transfer, and the suspended biomass. Empirical correlations or case-specific computational simulations are usually used to predict and estimate the performance of large-scale bioreactors based on data acquired at bench scale. In this two-part-study, one-dimensional axial diffusion equations were studied as a general and predictive model of large-scale bioreactors. This second part focused on typical fed-batch operations where substrate gradients are known to occur, and characterized the profiles of substrate, pH, oxygen, carbon dioxide, and temperature. The physically grounded steady-state axial diffusion equations with first- and zeroth-order kinetics yielded analytical solutions to the relevant variables. The results were compared with large-scale Escherichia coli and Saccharomyces cerevisiae experiments and simulations from the literature, and good agreement was found in substrate profiles. The analytical profiles obtained for dissolved oxygen, temperature, pH, and CO 2 ${\text{CO}}_{2}$ were also consistent with the available data. Distribution functions for the substrate were defined, and efficiency factors for biomass growth and oxygen uptake rate were derived. In conclusion, this study demonstrated that axial diffusion equations can be used to model the effects of mixing and reaction on the relevant variables of typical large-scale fed-batch fermentations.


Assuntos
Dióxido de Carbono , Oxigênio , Temperatura , Reatores Biológicos , Fermentação , Biomassa , Saccharomyces cerevisiae , Escherichia coli , Concentração de Íons de Hidrogênio
8.
Biotechnol Bioeng ; 121(9): 2848-2867, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138873

RESUMO

The fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.


Assuntos
Anticorpos Monoclonais , Cricetulus , Glucose , Animais , Glucose/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Cricetinae , Linhagem Celular , Meios de Cultura Livres de Soro , Metabolômica/métodos , Pulmão/metabolismo , Pulmão/citologia , Metaboloma , Imunoglobulina G/metabolismo , Células CHO , Técnicas de Cultura Celular por Lotes/métodos , Glutamina/metabolismo
9.
Biotechnol Bioeng ; 121(4): 1394-1406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214104

RESUMO

Dynamic flux balance analysis (FBA) allows estimation of intracellular reaction rates using organism-specific genome-scale metabolic models (GSMM) and by assuming instantaneous pseudo-steady states for processes that are inherently dynamic. This technique is well-suited for industrial bioprocesses employing complex media characterized by a hierarchy of substrate uptake and product secretion. However, knowledge of exchange rates of many components of the media would be required to obtain meaningful results. Here, we performed spent media analysis using mass spectrometry coupled with liquid and gas chromatography for a fed-batch, high-cell density cultivation of Escherichia coli BL21(DE3) expressing a recombinant protein. Time course measurements thus obtained for 246 metabolites were converted to instantaneous exchange rates. These were then used as constraints for dynamic FBA using a previously reported GSMM, thus providing insights into how the flux map evolves through the process. Changes in tri-carboxylic acid cycle fluxes correlated with the increased demand for energy during recombinant protein production. The results show how amino acids act as hubs for the synthesis of other cellular metabolites. Our results provide a deeper understanding of an industrial bioprocess and will have implications in further optimizing the process.


Assuntos
Técnicas de Cultura Celular por Lotes , Modelos Biológicos , Técnicas de Cultura Celular por Lotes/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometria de Massas , Proteínas Recombinantes/metabolismo , Meios de Cultura/metabolismo
10.
Mol Pharm ; 21(4): 1553-1562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440796

RESUMO

Oral dosage forms are the most widely and frequently used formulations to deliver active pharmaceutical ingredients (APIs), due to their ease of administration and noninvasiveness. Knowledge of intragastric release rates and gastric mixing is crucial for predicting the API release profile, especially for immediate release formulations. However, knowledge of the intragastric fate of oral dosage forms in vivo to date is limited, particularly for dosage forms administered when the stomach is in the fed state. An improved understanding of gastric food processing, dosage form location, disintegration times, and food effects is essential for greater understanding for effective API formulation design. In vitro standard and controlled modeling has played a significant role in predicting the behavior of dosage forms in vivo. However, discrepancies are reported between in vitro and in vivo disintegration times, with these discrepancies being greatest in the fed state. Studying the fate of a dosage form in vivo is a challenging process, usually requiring the use of invasive methods, such as intubation. Noninvasive, whole body imaging techniques can however provide unique insights into this process. A scoping review was performed systematically to identify and critically appraise published studies using MRI to visualize oral solid dosage forms in vivo in healthy human subjects. The review identifies that so far, an all-purpose robust contrast agent or dosage form type has not been established for dosage form visualization and disintegration studies in the gastrointestinal system. Opportunities have been identified for future studies, with particular focus on characterizing dosage form disintegration for development after the consumption food, as exemplified by the standard Food and Drug Administration (FDA) high fat meal.


Assuntos
Trato Gastrointestinal , Estômago , Humanos , Administração Oral , Estômago/diagnóstico por imagem , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Formas de Dosagem , Solubilidade , Comprimidos
11.
Protein Expr Purif ; 223: 106540, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38971213

RESUMO

To harness the diverse industrial applications of cellulase, including its use in the food, pulp, textile, agriculture, and biofuel sectors, this study focused on the high-yield production of a bioactive insect-derived endoglucanase, Monochamus saltuarius glycoside hydrolase family 5 (MsGHF5). MsGHF5 was introduced into the genome of Kluyveromyces lactis to maintain expression stability, and mass production of the enzyme was induced using fed-batch fermentation. After 40 h of cultivation, recombinant MsGHF5 was successfully produced in the culture broth, with a yield of 29,000 U/L, upon galactose induction. The optimal conditions for the activity of purified MsGHF5 were determined to be a pH of 5 and a temperature of 35 °C, with the presence of ferrous ions enhancing the enzymatic activity by up to 1.5-fold. Notably, the activity of MsGHF5 produced in K. lactis was significantly higher than that produced in Escherichia coli, suggesting that glycosylation is crucial for the functional performance of the enzyme. This study highlights the potential use of K. lactis as a host for the production of bioactive MsGHF5, thus paving the way for its application in various industrial sectors.


Assuntos
Celulase , Kluyveromyces , Proteínas Recombinantes , Animais , Kluyveromyces/genética , Kluyveromyces/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Celulase/genética , Celulase/química , Celulase/biossíntese , Celulase/isolamento & purificação , Celulase/metabolismo , Besouros/enzimologia , Besouros/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/biossíntese , Proteínas de Insetos/metabolismo , Proteínas de Insetos/isolamento & purificação , Concentração de Íons de Hidrogênio
12.
Protein Expr Purif ; 215: 106404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979630

RESUMO

Fragment of antigen-binding region (Fab) of antibodies are important biomolecules, with a broad spectrum of functionality in the biomedical field. While full length antibodies are usually produced in mammalian cells, the smaller size, lack of N-glycosylation and less complex structure of Fabs make production in microbial cell factories feasible. Since Fabs contain disulfide bonds, such production is often done in the periplasm, but there the formation of the inter-molecular disulfide bond between light and heavy chains can be problematic. Here we studied the use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) to express two Fabs (Herceptin and Maa48) in the cytoplasm of E. coli in fed-batch fermentation using a generic chemically defined media. We were able to solubly express both Fabs with purified yields of 565 mg/L (Maa48) and 660 mg/L (Herceptin) from low density fermentation. Both proteins exhibited CD spectra consistent with natively folded protein and both were biologically active. To our knowledge this is the first demonstration of high-level production of biological active Fabs in the cytoplasm of E. coli in industrially relevant fermentation conditions.


Assuntos
Escherichia coli , Fragmentos Fab das Imunoglobulinas , Animais , Citoplasma/metabolismo , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Trastuzumab , Fragmentos Fab das Imunoglobulinas/biossíntese
13.
Microb Cell Fact ; 23(1): 38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303005

RESUMO

BACKGROUND: The biosynthesis of human milk oligosaccharides (HMOs) using several microbial systems has garnered considerable interest for their value in pharmaceutics and food industries. 2'-Fucosyllactose (2'-FL), the most abundant oligosaccharide in HMOs, is usually produced using chemical synthesis with a complex and toxic process. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce 2'-FL, but the low stoichiometric yields (2'-FL/glucose or glycerol) are still far from meeting the requirements of industrial production. The sufficient carbon flux for 2'-FL biosynthesis is a major challenge. As such, it is of great significance for the construction of recombinant strains with a high stoichiometric yield. RESULTS: In the present study, we designed a 2'-FL biosynthesis pathway from fructose with a theoretical stoichiometric yield of 0.5 mol 2'-FL/mol fructose. The biosynthesis of 2'-FL involves five key enzymes: phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-D-mannose 4,6-dehydratase (Gmd), and GDP-L-fucose synthase (WcaG), and α-1,2-fucosyltransferase (FucT). Based on starting strain SG104, we constructed a series of metabolically engineered E. coli strains by deleting the key genes pfkA, pfkB and pgi, and replacing the original promoter of lacY. The co-expression systems for ManB, ManC, Gmd, WcaG, and FucT were optimized, and nine FucT enzymes were screened to improve the stoichiometric yields of 2'-FL. Furthermore, the gene gapA was regulated to further enhance 2'-FL production, and the highest stoichiometric yield (0.498 mol 2'-FL/mol fructose) was achieved by using recombinant strain RFL38 (SG104ΔpfkAΔpfkBΔpgi119-lacYΔwcaF::119-gmd-wcaG-manC-manB, 119-AGGAGGAGG-gapA, harboring plasmid P30). In the scaled-up reaction, 41.6 g/L (85.2 mM) 2'-FL was produced by a fed-batch bioconversion, corresponding to a stoichiometric yield of 0.482 mol 2'-FL/mol fructose and 0.986 mol 2'-FL/mol lactose. CONCLUSIONS: The biosynthesis of 2'-FL using recombinant E. coli from fructose was optimized by metabolic engineering strategies. This is the first time to realize the biological production of 2'-FL production from fructose with high stoichiometric yields. This study also provides an important reference to obtain a suitable distribution of carbon flux between 2'-FL synthesis and glycolysis.


Assuntos
Escherichia coli , Frutose , Humanos , Escherichia coli/metabolismo , Frutose/metabolismo , Trissacarídeos , Oligossacarídeos , Engenharia Metabólica , Fucosiltransferases/genética
14.
Microb Cell Fact ; 23(1): 166, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840157

RESUMO

BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.


Assuntos
Dissulfetos , Escherichia coli , Peptídeos , Periplasma , Escherichia coli/metabolismo , Escherichia coli/genética , Periplasma/metabolismo , Dissulfetos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Aprotinina/metabolismo , Aprotinina/genética
15.
Microb Cell Fact ; 23(1): 112, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622596

RESUMO

BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.


Assuntos
Celulase , Hypocreales , Trichoderma , Celulase/metabolismo , Lactose/metabolismo , Reprodutibilidade dos Testes , Biotecnologia , Trichoderma/metabolismo
16.
Microb Cell Fact ; 23(1): 70, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419080

RESUMO

We report the successful fabrication of a pharmaceutical cellular bank (PCB) containing magnetotactic bacteria (MTB), which belong to the Magnetospirillum gryphiswaldense MSR1 species. To produce such PCB, we amplified MTB in a minimal growth medium essentially devoid of other heavy metals than iron and of CMR (Carcinogenic, mutagenic and reprotoxic) products. The PCB enabled to acclimate MTB to such minimal growth conditions and then to produce highly pure magnetosomes composed of more than 99.9% of iron. The qualification of the bank as a PCB relies first on a preserved identity of the MTB compared with the original strain, second on genetic bacterial stability observed over 100 generations or under cryo-preservation for 16 months, third on a high level of purity highlighted by an absence of contaminating microorganisms in the PCB. Furthermore, the PCB was prepared under high-cell load conditions (9.108 cells/mL), allowing large-scale bacterial amplification and magnetosome production. In the future, the PCB could therefore be considered for commercial as well as research orientated applications in nanomedicine. We describe for the first-time conditions for setting-up an effective pharmaceutical cellular bank preserving over time the ability of certain specific cells, i.e. Magnetospirillum gryphiswaldense MSR1 MTB, to produce nano-minerals, i.e. magnetosomes, within a pharmaceutical setting.


Assuntos
Magnetossomos , Magnetospirillum , Magnetospirillum/genética , Ferro , Preparações Farmacêuticas , Proteínas de Bactérias/genética
17.
Pharm Res ; 41(4): 673-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472609

RESUMO

PURPOSE: The purpose of this study was to develop a simulation model for the pharmacokinetics (PK) of drugs undergoing enterohepatic circulation (EHC) with consideration to the environment in the gastrointestinal tract in the fed state in humans. The investigation particularly focused on the necessity of compensating for the permeability rate constant in the reabsorption process in consideration of drug entrapment in bile micelles. METHODS: Meloxicam and ezetimibe were used as model drugs. The extent of the entrapment of drugs inside bile micelles was evaluated using the solubility ratio of Fed State Simulated Intestinal Fluid version 2 (FeSSIF-V2) to Fasted State Simulated Intestinal Fluid version 2 (FaSSIF-V2). Prediction accuracy was evaluated using the Mean Absolute Percentage Error (MAPE) value, calculated from the observed and predicted oral PK profiles. RESULTS: The solubilization of ezetimibe by bile micelles was clearly observed while that of meloxicam was not. Assuming that only drugs in the free fraction of micelles permeate through the intestinal membrane, PK simulation for ezetimibe was performed in both scenarios with and without compensation by the permeation rate constant. The MAPE value of Zetia® tablet, containing ezetimibe, was lower with compensation than without compensation. By contrast, Mobic® tablet, containing meloxicam, showed a relatively low MAPE value even without compensation. CONCLUSION: For drugs which undergo EHC and can be solubilized by bile micelles, compensating for the permeation rate constant in the reabsorption process based on the free fraction ratio appears an important factor in increasing the accuracy of PK profile prediction.


Assuntos
Circulação Êntero-Hepática , Micelas , Humanos , Meloxicam , Solubilidade , Ezetimiba , Comprimidos
18.
Environ Res ; 249: 118449, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354880

RESUMO

The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.


Assuntos
Compostagem , Compostagem/métodos , Microbiologia do Solo , RNA Ribossômico 16S/análise , Microbiota , Bactérias/classificação , Bactérias/genética , Solo/química
19.
Environ Res ; 251(Pt 1): 118552, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417662

RESUMO

Revealing the magnitude, dynamics, and influencing factors of CO2 emissions across the water-air interface in karst water with high frequency is crucial for accurately assessing the carbon budget in a karst environment. Due to the limitations of observation methods, the current research is still very insufficient. To solve the above problems and clarify the main influencing factors of CO2 emission in karst water, this study selected Dalongdong (DLD) Reservoir, located in the typical karst peak and valley area in southwest China, to carry out a multi-parameter high-frequency monitoring study from January to December 2021, and used the thin boundary model method to estimate the CO2 flux across the water-air interface (CF). The average annual flux of DLD reservoir is 84.48 mmol·(m2·h)-1, which represents a CO2 source overall. However, during the stratification period in August, there is a transient carbon sink due to negative CO2 emission. The alteration of thermal stratification in water is crucial in regulating the seasonal variation of CF. Meanwhile, the diurnal variation is significantly influenced by changes in hydrochemical parameters during the thermal stratification stage. Compared to low wind speeds (<3 m/s), high wind speeds (≥3 m/s) have a greater impact on the CO2 flux. Furthermore, high-frequency continuous data revealed that the reservoir triggered a CO2 pulse emission during the turnover process, primarily at night, leading to unusually high CO2 flux values. It is of great significance to monitor and reveal the process, flux, and control factors of CO2 flux in land water at a high-frequency strategy. They will help improve the accuracy of regional or watershed carbon budgets and clarify the role of global land water in the global carbon budget.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Água Subterrânea , Dióxido de Carbono/análise , China , Monitoramento Ambiental/métodos , Água Subterrânea/química , Água Subterrânea/análise , Estações do Ano , Poluentes Atmosféricos/análise , Vento
20.
Environ Res ; 252(Pt 3): 119041, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704013

RESUMO

Under the influence of periodic temperature variations, biogeochemical cycling in water bodies is markedly affected by the periodic thermal stratification processes in subtropical reservoirs or lakes. In current studies, there is insufficient research on the influence and mechanism of dissolved inorganic carbon (DIC) distribution in karst carbon-rich groundwater-fed reservoirs under the coupled effects of thermal structure stratification and the biological carbon pump (BCP) effect. To address this issue, the Dalongdong (DLD) reservoir in the subtropical region of southern China was chosen as the site for long-term monitoring and research on relevant physicochemical parameters of water, DIC, and its stable carbon isotope (δ13CDIC), CO2 emission flux, as well as the reservoir's thermal stratification index. The results show that: (1) the DLD reservoir is a typical warm monomictic reservoir, which exhibits regular variations of mixing period-stratification period-mixing period on a yearly scale due to thermal structure changes; (2) DIC was consumed by aquatic photosynthetic organisms in the epilimnion during the stratification period, leading to a decrease in DIC concentration, partial pressure of CO2 (pCO2) and CO2 emission flux, and an increase in stable carbon isotope (δ13CDIC). During the mixing period, the trend was reversed; (3) During the thermal stratification, aquatic photosynthesis and water temperature were the primary factors controlling DIC variations in both the epilimnion and thermocline. Regarding the hypolimnion, calcite dissolution, organic matter decomposition, and water temperature were the dominant controlling factors. These results indicate that although carbon-rich karst groundwater provides a plentiful supply of DIC in the DLD reservoir, its availability is still influenced by variations in the reservoir's thermal structure and the metabolic processes of aquatic photosynthetic organisms. Therefore, to better estimate the regional carbon budget in a reservoir or lake, future studies should especially consider the combined effects of BCP and thermal structure variations on carbon variations.


Assuntos
Água Subterrânea , Fotossíntese , Temperatura , Água Subterrânea/química , China , Carbono/química , Carbono/análise , Monitoramento Ambiental/métodos , Dióxido de Carbono/análise , Dióxido de Carbono/química , Isótopos de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA