RESUMO
Four experiments were conducted to evaluate sources of anti-coccidial compounds and phytogenic saponin extracts on in vitro and in vivo ruminal fermentation and CH4 production at multiple inclusion levels. In experiment 1, eight steers were fed either a finishing diet or a finishing diet supplemented with 0.5 mg/kg BW decoquinate (DCQ) and 3.33 mg/kg BW Yucca schidigera extract (YSE), and respiratory gas exchange was measured. In experiment 2, four ruminally-cannulated steers were fed the same treatments as experiment 1, and ruminal fermentation was evaluated. Anti-coccidial sources (experiment 3; monensin, DCQ, amprolium) and saponin sources (experiment 4; YSE, Quillaja saponaria extract) and levels were evaluated for effects on in vitro ruminal fermentation and CH4 production. DCQ + YSE supplementation did not influence (p ≥ 0.24) in vivo respiratory gas consumption/production, in situ DM degradation, or liquid passage kinetics. Ruminal propionate proportion tended to increase (p = 0.09) with DCQ + YSE. Monensin decreased (p ≤ 0.04) in vitro acetate:propionate and CH4 production; saponin supplementation linearly increased (p < 0.01) propionate proportion but did not influence (p ≥ 0.38) in vitro CH4 production. Saponins and non-antibiotic anti-coccidials did not influence in vitro or in vivo CH4 production with finishing diets.
RESUMO
The objective of this experiment was to determine the effects of increasing trace mineral (TM) supplementation on finishing cattle performance, carcass characteristics, TM balance, and antibody concentrations. Commercial Angus steers (n = 240; body weight, BW = 291 kg ± 27.4) were stratified by arrival BW and source and randomly assigned to 1 of 4 experimental treatments in a randomized complete block design (12 pens/treatment; 5 steers/pen). All steers underwent a TM depletion period for a minimum of 42-d prior to the administration experimental treatments. Treatments included a negative control (CON) in which cattle received no additional TM supplementation or TM supplementation treatments in which cattle received added Co, Cu, I, Mn, Se, or Zn from inorganic TM sources at 2016 Nutrient Requirements of Beef Cattle (NASEM) requirement levels (1X), at 2 times NASEM requirements (2X), or at 4 times NASEM requirements (4X). Selenium was included at 0.1, 0.2, and 0.3 mg/kg for 1X, 2X, and 4X respectively, based on federal law. There was no difference in overall BW, average daily gain (ADG), dry matter intake (DMI), or gain to feed (G:F) due to TM supplementation (CON vs. SUPP P ≥ 0.47). There was no difference in hot carcass weight, rib eye area, fat thickness, dressing percentage, marbling score, or USDA Yield Grade due to TM supplementation (CON vs. SUPP P ≥ 0.30). One steer was chosen at random from each pen to be evaluated for serum and liver TM status and antibody concentrations to common respiratory viruses. There was a treatment × day interaction for serum Co and liver Cu and Se (P < 0.0001). Serum Co was greatest for the 4X treatment from d 28 through harvest. Liver Cu was greatest for the 2X and 4X treatments from d 56 through harvest. Liver Se was greatest for 2X and 4X from d 28 through harvest. Serum Zn was greatest for the 4X treatment (P = 0.02). There was an effect of day on liver Co, Fe, Mn, Mo, and Zn (P ≤ 0.0001) and serum Cu, Mn, Mo, Se, and Zn (P ≤ 0.002). Concentrations for individual TM had different trends over time, however, all reported values were within normal ranges. There was an effect of time on bovine viral diarrhea virus Type 1A, bovine herpesvirus type 1, and bovine parainfluenza 3 virus antibody concentrations (P ≤ 0.0001). Supplementation of TM above NASEM requirements did not affect overall cattle performance, carcass characteristics, or antibody concentrations, but did affect the storage and circulation of certain TM.
RESUMO
Five ruminally cannulated steers (body weight = 390 ± 7.86 kg) were used in three experiments to evaluate effects of corn processing, flake density, and starch retrogradation on in situ ruminal degradation. In experiment 1, corn was left whole or processed with no screen, ground through a 6-mm screen, or ground through a 1-mm screen. In experiment 2, we produced steam-flaked corn at four densities: 309, 335, 360, and 386 g/L. These four flake densities were sifted for 20 s through a 4-mm screen to produce two particle sizes within each flake density: sifted flakes (>4 mm) and sifted fines (<4 mm). In experiment 3, sifted flakes (335 g/L) were stored for 3-d at either 23 °C (starch availability = 55%) or 55 °C to induce starch retrogradation (starch availability = 41%). All samples for each of the three experiments were weighed into nylon bags and ruminally incubated for 0-h to estimate the soluble fraction. The residue remaining was analyzed for nutrient composition. In experiment 1, whole shelled corn had lesser (P < 0.01) ruminal solubility of all nutrients measured compared with ground corn. Corn ground with a screen (6 and 1 mm) had greater (P < 0.01) ruminal solubility of all nutrients measured compared with corn ground with no screen. Corn ground through a 1-mm screen had greater (P < 0.03) ruminal solubility of DM, total starch, CP, ADF, AHF, P, Mg, K, S, Zn, Fe, and Mn compared with corn ground through a 6-mm screen. In experiment 2, increasing flake density linearly decreased (P < 0.02) the soluble fraction of DM, total starch, CP, ADF, AHF, P, K, S, and Zn of sifted flakes. The soluble DM fraction of sifted fines tended to decrease (P = 0.06) linearly with increasing flake density. Total starch, CP, NDF, and Zn soluble fractions of sifted fines were not influenced by flake density. In experiment 3, storage of sifted flakes in heat-sealed foil bags at 55 °C for 3-d decreased (P < 0.04) the soluble fractions of DM, total starch, CP, NDF, P, Mg, K, S, and Fe. With each increase in the degree of corn processing, there was an increase in the solubility of nutrients. Increasing flake density can decrease ruminal solubility of flakes; however, the soluble fraction of sifted fines is not influenced as much by changes in flake density. Inducing starch retrogradation decreases ruminal solubility of starch, nonstarch OM, and minerals.
Grain processing has been used for decades to improve digestibility of finishing cattle diets, leading to improved growth performance and feed efficiency. The soluble fraction of a feed can be defined as the fraction that disappears immediately in the rumen and its measurement can be useful for understanding kinetic properties of feed digestion. Grain processing methods that result in changes in particle size, flake density, or starch retrogradation have been shown to affect the soluble fraction of dry matter in the rumen. However, it is unknown how the solubility of different nutrients are affected by these changes. The objective of this experiment was to characterize how corn processing, flake density, particle size, and starch retrogradation influence the soluble fraction of starch, protein, fiber, and minerals. With each increase in the degree of corn processing, there was an increase in the solubility of nutrients. Increasing flake density can decrease ruminal solubility of flakes; however, the soluble fraction of sifted fines is not influenced as much by changes in flake density. Inducing starch retrogradation decreases ruminal solubility of starch, nonstarch OM, and minerals. Understanding the factors influencing ruminal solubility of processed corn is important when modeling digestion in beef cattle.
Assuntos
Amido , Zea mays , Ração Animal/análise , Animais , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão , Manipulação de Alimentos , Minerais/metabolismo , Rúmen/metabolismo , Solubilidade , Amido/metabolismo , Zea mays/químicaRESUMO
Measuring enzymatic starch availability is commonly used as a quality control method to ensure steam-flaked corn manufacturing consistency in commercial cattle feeding operations. However, starch availability estimates can be variable. We conducted five experiments to evaluate factors influencing starch availability estimates of steam-flaked corn. In Exp. 1, sample handling methods were evaluated. Sifted flakes were immediately placed into a plastic bag, air equilibrated for 240 min, oven-dried, or freeze-dried. Directly oven-drying samples at 55°C decreased (P < 0.01) starch availability compared to other sample handling methods. In Exp. 2, sifted flakes were air equilibrated for 0, 15, 30, 60, 120, or 240 min. Air equilibration time did not influence (P ≥ 0.54) starch availability. In Exp. 3, samples were evaluated for effects of sifting through a 4-mm screen (flakes + fines vs. sifted flakes) and air equilibration time (0 vs. 240 min). Both sifting steam-flaked corn samples and air equilibration for 240 min increased starch availability (P < 0.01 and P = 0.02, respectively). In Exp. 4, we evaluated the effects of air equilibration time (0 vs. 240 min) on the two sifted portions (sifted flakes vs. sifted fines). There was an air equilibration time × sifted portion interaction for starch availability because air equilibration time increased (P < 0.01) starch availability of sifted fines but did not influence starch availability of sifted flakes. Concentrations of crude protein, soluble crude protein, neutral and acid detergent fiber, ether extract, and acid-hydrolyzed fat, Ca, P, K, Mg, S, Fe, Zn, Mg, and Cu were greater (P < 0.01) for sifted fines compared to sifted flakes. Starch availability and total starch concentration were greater (P < 0.01) for sifted flakes compared to sifted fines. In Exp. 5, effects of air equilibration time (0 vs. 240 min) and storage temperature (23°C vs. 55°ºC) on flakes + fines were evaluated. Storage of flakes + fines in heat-sealed foil bags at 55°C for 3-d decreased (P < 0.01) starch availability by 40.7%. Sifted flakes contained less moisture, greater total starch concentrations, and greater starch availability than sifted fines. Moisture, sifting, air equilibration time, and storage temperature influence starch availability of steam-flaked corn. Adoption of the strategies discussed in the current study will lead to more consistent estimates of starch availability.
Assuntos
Amido , Zea mays , Ração Animal/análise , Animais , Bovinos , Dieta , Digestão , Manipulação de Alimentos , Rúmen , Manejo de Espécimes/veterinária , Vapor , TemperaturaRESUMO
Five ruminally cannulated steers (body weight = 390 ± 7.86 kg) were used in two experiments to evaluate the effects of flake density and starch retrogradation on in situ ruminal degradation of steam-flaked corn. In experiment 1, sifted flakes with flake densities of 257, 296, 335, 373, and 412 g/L (enzymatic starch availabilities: 87%, 76%, 66%, 43%, and 49%, respectively) were evaluated in a randomized complete block design experiment. In experiment 2, the experimental design was a randomized complete block design with a 3 × 2 factorial arrangement of treatments. Three steam-flaked corn fractions corresponding to different particle sizes were used: flakes + fines (not sifted; >4 and <4 mm), sifted flakes (>4 mm), and sifted fines (<4 mm). Particle size fractions were stored for 3 d at either 23 °C or 55 °C (starch availabilities averaged across particle sizes: 53.3% and 25.5%, respectively) in heat-sealed foil bags. Samples were ruminally incubated for 0, 3, 6, 12, 24, 48, 72, or 96 h. Degradation data were modeled to obtain the rate and extent of degradation and passage rate was set to 6% per hour. In experiment 1, the rate of degradation decreased linearly (P < 0.01) and in situ ruminal dry matter (DM) degradability decreased linearly (P < 0.01) from 78.9% to 57.3% as flake density increased from 257 to 412 g/L. In experiment 2, storage of steam-flaked corn samples at 55 °C for 3 d decreased (P < 0.01) the rate of degradation by 37.6% across all particle sizes. Storing samples at 55 °C for 3 d decreased (P < 0.01) in situ ruminal DM degradability of flakes + fines, sifted flakes, and sifted fines by 20.9%, 22.6%, and 14.7%, respectively. Using data from experiment 1 and 2, enzymatic starch availability of sifted flakes was positively correlated (R2 = 0.97; P < 0.01) with in situ ruminal DM degradability. The results demonstrate that decreased starch availability resulting from either starch retrogradation or increased flake density is associated with decreased ruminal digestibility. Decreases in starch availability and in situ ruminal degradability may indicate that increasing flake density or starch retrogradation could potentially alter the site of digestion in cattle. Using prediction equations, decreases in ruminal starch digestibility of steam-flaked corn caused by increasing flake density or increasing starch retrogradation could increase energetic efficiency, depending on the rate of passage and if small intestinal starch digestibility is maintained.
Assuntos
Amido , Zea mays , Ração Animal/análise , Animais , Bovinos , Dieta , Digestão , Manipulação de Alimentos , Rúmen , VaporRESUMO
Ractopamine hydrochloride (RAC) is a ß-adrenergic agonist that functions as a repartitioning agent to improve muscling in feedlot cattle. Many studies have investigated the effects of RAC on growth performance and carcass characteristics; however, there is minimal information about the influence of RAC on feeding behavior. Sixty-nine steers (body weight [BW] = 364 ± 3.9 kg) predominately of Angus and Simmental breeding were subjected to a 126-d (n = 46) or 154-d (n = 23) feeding period and randomly assigned to one of two treatment groups: supplementation to provide 0 (CON; n = 34) or 267 ± 4.9 mg/d of RAC (n = 35). Ractopamine was provided as Optaflexx 45 at 0.024% of the diet (dry matter [DM] basis; Elanco Animal Health, Greenfield, IN). Dietary treatments were fed the final 42 d in the feed yard (treatment period). Feeding behavior and growth performance were measured using radio frequency identification tags and the Insentec feeding system. Following the final day of treatment, steers were slaughtered and carcass measurements were recorded. Data were analyzed using MIXED models in SAS. There were no differences in BW, average daily gain (ADG), DM intake (DMI), gain:feed ratio (G:F), or feeding behavior during the pretreatment period (P > 0.44). Ractopamine supplementation increased G:F during the treatment period (P = 0.02) and during the total period (P = 0.03) and tended to increase ADG during the treatment and total period (P ≤ 0.08). DMI was not affected during the treatment or total period (P > 0.67). Eating time per visit, per meal, and per day were decreased (P < 0.02) in steers supplemented with RAC during the treatment period. DMI per minute was increased (P = 0.02) in steers supplemented with RAC. Hot carcass weight, dressing percentage, and 12th rib fat were not influenced by RAC supplementation. Ractopamine supplementation decreased marbling (P = 0.008) and kidney, pelvic, and heart percentage (P = 0.04) and increased longissimus muscle area (P = 0.01). These data demonstrate that RAC supplementation for 42 d improves feed efficiency, increases the rate of DMI without altering DMI, and increases muscling in finishing cattle.