Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718866

RESUMO

Iron is an essential element for proper cell functioning, but unbalanced levels can cause cell death. Iron metabolism is controlled at the blood-tissue barriers provided by microvascular endothelial cells. Dysregulated iron metabolism at these barriers is a factor in both neurodegenerative and cardiovascular diseases. Mammalian iron efflux is mediated by the iron efflux transporter ferroportin (Fpn). Inflammation is a factor in many diseases and correlates with increased tissue iron accumulation. Evidence suggests treatment with interleukin 6 (IL-6) increases intracellular calcium levels and calcium is known to play an important role in protein trafficking. We have shown that calcium increases plasma membrane localization of the iron uptake proteins ZIP8 and ZIP14, but if and how calcium modulates Fpn trafficking is unknown. In this article, we examined the effects of IL-6 and calcium on Fpn localization to the plasma membrane. In HEK cells expressing a doxycycline-inducible GFP-tagged Fpn, calcium increased Fpn-GFP membrane presence by 2 h, while IL-6 increased membrane-localized Fpn-GFP by 3 h. Calcium pretreatment increased Fpn-GFP mediated 55Fe efflux from cells. Endoplasmic reticulum calcium stores were shown to be important for Fpn-GFP localization and iron efflux. Use of calmodulin pathway inhibitors showed that calcium signaling is important for IL-6-induced Fpn relocalization. Studies in brain microvascular endothelial cells in transwell culture demonstrated an initial increase in 55Fe flux with IL-6 that is reduced by 6 h coinciding with upregulation of hepcidin. Overall, this research details one pathway by which inflammatory signaling mediated by calcium can regulate iron metabolism, likely contributing to inflammatory disease mechanisms.


Assuntos
Cálcio , Proteínas de Transporte de Cátions , Membrana Celular , Interleucina-6 , Ferro , Transporte Proteico , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Ferro/metabolismo , Membrana Celular/metabolismo , Cálcio/metabolismo , Células HEK293 , Animais , Células Endoteliais/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genética
2.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398730

RESUMO

Fetal development relies on adequate iron supply by the placenta. The placental syncytiotrophoblasts (SCTB) express high levels of iron transporters, including ferroportin1 (Fpn1). Whether they are essential in the placenta has not been tested directly, mainly due to the lack of gene manipulation tools in SCTB. Here, we aimed to generate a SCTB-specific Cre mouse and use it to determine the role of placental Fpn1. Using CRISPR/Cas9 technology, we created a syncytin b (Synb) Cre line (SynbCre) targeting the fetal-facing SCTB layer in mouse placental labyrinth. SynbCre deleted Fpn1 in late gestation mouse placentas reliably with high efficiency. Embryos without placental Fpn1 were pale and runted, and died before birth. Fpn1 null placentas had reduced transferrin receptor expression, increased oxidative stress and detoxification responses, and accumulated ferritin in the SCTB instead of the fetal endothelium. In summary, we demonstrate that SynbCre is an effective and specific tool to investigate placental gene function in vivo. The loss of Fpn1 in late gestation mouse placenta is embryonically lethal, providing direct evidence for an essential role of Fpn1 in placental iron transport.


Assuntos
Proteínas de Transporte de Cátions , Placenta , Feminino , Gravidez , Camundongos , Animais , Ferro , Parto , Proteínas de Transporte de Cátions/genética
3.
Proc Natl Acad Sci U S A ; 119(26): e2121400119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737834

RESUMO

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.


Assuntos
Ferro , Macrófagos , Monoterpenos , Tropolona/análogos & derivados , Animais , Proteínas de Transporte de Cátions/deficiência , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Monoterpenos/metabolismo , Transferrina/metabolismo , Tropolona/metabolismo , Peixe-Zebra/metabolismo
4.
Eur Heart J ; 45(26): 2281-2293, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733250

RESUMO

Current understanding of iron-deficient heart failure is based on blood tests that are thought to reflect systemic iron stores, but the available evidence suggests greater complexity. The entry and egress of circulating iron is controlled by erythroblasts, which (in severe iron deficiency) will sacrifice erythropoiesis to supply iron to other organs, e.g. the heart. Marked hypoferraemia (typically with anaemia) can drive the depletion of cardiomyocyte iron, impairing contractile performance and explaining why a transferrin saturation < ≈15%-16% predicts the ability of intravenous iron to reduce the risk of major heart failure events in long-term trials (Type 1 iron-deficient heart failure). However, heart failure may be accompanied by intracellular iron depletion within skeletal muscle and cardiomyocytes, which is disproportionate to the findings of systemic iron biomarkers. Inflammation- and deconditioning-mediated skeletal muscle dysfunction-a primary cause of dyspnoea and exercise intolerance in patients with heart failure-is accompanied by intracellular skeletal myocyte iron depletion, which can be exacerbated by even mild hypoferraemia, explaining why symptoms and functional capacity improve following intravenous iron, regardless of baseline haemoglobin or changes in haemoglobin (Type 2 iron-deficient heart failure). Additionally, patients with advanced heart failure show myocardial iron depletion due to both diminished entry into and enhanced egress of iron from the myocardium; the changes in iron proteins in the cardiomyocytes of these patients are opposite to those expected from systemic iron deficiency. Nevertheless, iron supplementation can prevent ventricular remodelling and cardiomyopathy produced by experimental injury in the absence of systemic iron deficiency (Type 3 iron-deficient heart failure). These observations, taken collectively, support the possibility of three different mechanistic pathways for the development of iron-deficient heart failure: one that is driven through systemic iron depletion and impaired erythropoiesis and two that are characterized by disproportionate depletion of intracellular iron in skeletal and cardiac muscle. These mechanisms are not mutually exclusive, and all pathways may be operative at the same time or may occur sequentially in the same patients.


Assuntos
Anemia Ferropriva , Insuficiência Cardíaca , Ferro , Músculo Esquelético , Miócitos Cardíacos , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Músculo Esquelético/metabolismo , Anemia Ferropriva/metabolismo , Miocárdio/metabolismo , Deficiências de Ferro , Eritropoese/fisiologia , Eritroblastos/metabolismo
5.
J Cell Mol Med ; 28(14): e18543, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054575

RESUMO

The significance of iron in myocardial mitochondria function cannot be underestimated, because deviations in iron levels within cardiomyocytes may have profound detrimental effects on cardiac function. In this study, we investigated the effects of ferroportin 1 (FPN1) on cardiac iron levels and pathological alterations in mice subjected to chronic intermittent hypoxia (CIH). The cTNT-FPN1 plasmid was administered via tail vein injection to induce the mouse with FPN1 overexpression in the cardiomyocytes. CIH was established by exposing the mice to cycles of 21%-5% FiO2 for 3 min, 8 h per day. Subsequently, the introduction of hepcidin resulted in a reduction in FPN1 expression, and H9C2 cells were used to establish an IH model to further elucidate the role of FPN1. First, FPN1 overexpression ameliorated CIH-induced cardiac dysfunction, myocardial hypertrophy, mitochondrial damage and apoptosis. Second, FPN1 overexpression attenuated ROS levels during CIH. In addition, FPN1 overexpression mitigated CIH-induced cardiac iron accumulation. Moreover, the administration of hepcidin resulted in a reduction in FPN1 levels, further accelerating the CIH-induced levels of ROS, LIP and apoptosis in H9C2 cells. These findings indicate that the overexpression of FPN1 in cardiomyocytes inhibits CIH-induced cardiac iron accumulation, subsequently reducing ROS levels and mitigating mitochondrial damage. Conversely, the administration of hepcidin suppressed FPN1 expression and worsened cardiomyocyte iron toxicity injury.


Assuntos
Apoptose , Cardiomegalia , Proteínas de Transporte de Cátions , Hipóxia , Ferro , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/etiologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Masculino , Hepcidinas/metabolismo , Hepcidinas/genética , Linhagem Celular , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Ratos
6.
Am J Physiol Renal Physiol ; 326(2): F178-F188, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994409

RESUMO

Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.


Assuntos
Injúria Renal Aguda , Proteínas de Transporte de Cátions , Sobrecarga de Ferro , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Homeostase/fisiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
7.
Blood Cells Mol Dis ; 104: 102777, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391347

RESUMO

Iron is an essential nutrient for microbes, plants and animals. Multicellular organisms have evolved multiple strategies to control invading microbes by restricting microbial access to iron. Hypoferremia of inflammation is a rapidly-acting organismal response that prevents the formation of iron species that would be readily accessible to microbes. This review takes an evolutionary perspective to explore the mechanisms and host defense function of hypoferremia of inflammation and its clinical implications.


Assuntos
Hepcidinas , Inflamação , Animais , Ferro
8.
IUBMB Life ; 76(8): 523-533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38348962

RESUMO

Ferroportin (FPN) is a transmembrane protein and is the only known iron exporter that helps in maintaining iron homeostasis in vertebrates. To maintain stable iron equilibrium in the body, ferroportin works in conjunction with a peptide called hepcidin. In this study, we have identified an alternatively spliced novel isoform of the human SLC40A1 gene, which encodes for the FPN protein and is found to be expressed in different tissues. The novel transcript has an alternate last exon and encodes 31-amino acid long peptide sequence that replaces 104 amino acids at C-terminal in the novel transcript. Molecular modelling and molecular dynamics (MD) simulation studies revealed key structural features of the novel isoform (FPN-N). FPN-N was predicted to have 12 transmembrane domains similar to the reported isoform (FPN), despite being much smaller in size. FPN-N was found to interact with hepcidin, a key regulator of ferroportin activity. Also, the iron-binding sites were retained in the novel isoform as revealed by the MD simulation of FPN-N in bilipid membrane. The novel isoform identified in this study may play important role in iron homeostasis. However, further studies are required to characterize the FPN-N isoform and decipher its role inside the cell.


Assuntos
Processamento Alternativo , Proteínas de Transporte de Cátions , Hepcidinas , Ferro , Simulação de Dinâmica Molecular , Isoformas de Proteínas , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/química , Ferro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Sítios de Ligação , Modelos Moleculares
9.
Ann Hematol ; 103(6): 2173-2176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637332

RESUMO

A 58-year-old female was found to have hyperferritinemia (Serum ferritin:1683 ng/mL) during work-up for mild normocytic anemia. Transferrin saturation(TSAT) was low-normal. Magnetic resonance imaging (MRI) abdomen showed evidence of hepatic iron deposition. Liver biopsy showed 4 + hepatic iron deposition without any evidence of steatosis or fibrosis. Quantitative liver iron was elevated at 348.3 µmol/g dry liver weight [Reference range(RR): 3-33 µmol/g dry liver weight]. She was presumptively diagnosed with tissue iron overload, cause uncertain. A diagnosis of ferroportin disease (FD) was considered, but the pattern of iron distribution in the liver, mainly within the hepatic parenchyma (rather than in the hepatic Kupffer cells seen in FD), and the presence of anemia (uncommon in FD) made this less likely. She was treated with intermittent phlebotomy for over a decade with poor tolerance due to worsening normocytic to microcytic anemia. A trial of deferasirox was done but it was discontinued after a month due to significant side effects. During the course of treatment, her ferritin level decreased. Over the past 1.5 years, she developed progressively worsening neurocognitive decline. MRI brain showed areas of susceptibility involving basal ganglia, midbrain and cerebellum raising suspicion for metabolic deposition disease. Neuroimaging findings led to testing for serum copper and ceruloplasmin levels which were both found to be severely low. Low serum copper, ceruloplasmin levels and neuroimaging findings led us to consider Wilson disease however prior liver biopsy showing elevated hepatic iron rather than hepatic copper excluded the diagnosis of Wilson disease. After shared decision making, ceruloplasmin gene analysis was not pursued due to patient's preference and prohibitive cost of testing. The diagnosis of aceruloplasminemia was ultimately made. The biochemical triad of hyperferritinemia, low-normal TSAT and microcytic anemia should raise the possibility of aceruloplasminemia. Since neurological manifestations are rare in most inherited iron overload syndromes, neurological symptoms in a patient with tissue iron overload should prompt consideration of aceruloplasminemia as a differential diagnosis.


Assuntos
Ceruloplasmina , Distúrbios do Metabolismo do Ferro , Imageamento por Ressonância Magnética , Humanos , Feminino , Pessoa de Meia-Idade , Ceruloplasmina/deficiência , Ceruloplasmina/análise , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/genética , Doenças Neurodegenerativas/diagnóstico , Fígado/patologia , Fígado/metabolismo , Fígado/diagnóstico por imagem , Ferritinas/sangue , Ferro/metabolismo , Ferro/sangue , Diagnóstico Diferencial , Sobrecarga de Ferro/diagnóstico , Deferasirox/uso terapêutico
10.
Arterioscler Thromb Vasc Biol ; 43(5): 713-725, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951059

RESUMO

BACKGROUND: Hepcidin is a liver-derived hormone that controls systemic iron homeostasis, by inhibiting the iron exporter ferroportin in the gut and spleen, respective sites of iron absorption and recycling. Hepcidin is also expressed ectopically in the context of cardiovascular disease. However, the precise role of ectopic hepcidin in underlying pathophysiology is unknown. In patients with abdominal aortic aneurysm (AAA), hepcidin is markedly induced in smooth muscle cells (SMCs) of the aneurysm wall and inversely correlated with the expression of LCN2 (lipocalin-2), a protein implicated in AAA pathology. In addition, plasma hepcidin levels were inversely correlated with aneurysm growth, suggesting hepcidin has a potential disease-modifying role. METHODS: To probe the role of SMC-derived hepcidin in the setting of AAA, we applied AngII (Angiotensin-II)-induced AAA model to mice harbouring an inducible, SMC-specific deletion of hepcidin. To determine whether SMC-derived hepcidin acted cell-autonomously, we also used mice harboring an inducible SMC-specific knock-in of hepcidin-resistant ferroportinC326Y. The involvement of LCN2 was established using a LCN2-neutralizing antibody. RESULTS: Mice with SMC-specific deletion of hepcidin or knock-in of hepcidin-resistant ferroportinC326Y had a heightened AAA phenotype compared with controls. In both models, SMCs exhibited raised ferroportin expression and reduced iron retention, accompanied by failure to suppress LCN2, impaired autophagy in SMCs, and greater aortic neutrophil infiltration. Pretreatment with LCN2-neutralizing antibody restored autophagy, reduced neutrophil infiltration, and prevented the heightened AAA phenotype. Finally, plasma hepcidin levels were consistently lower in mice with SMC-specific deletion of hepcidin than in controls, indicating that SMC-derived hepcidin contributes to the circulating pool in AAA. CONCLUSIONS: Hepcidin elevation in SMCs plays a protective role in the setting of AAA. These findings are the first demonstration of a protective rather than deleterious role for hepcidin in cardiovascular disease. They highlight the need to further explore the prognostic and therapeutic value of hepcidin outside disorders of iron homeostasis.


Assuntos
Aneurisma da Aorta Abdominal , Doenças Cardiovasculares , Camundongos , Animais , Hepcidinas/genética , Doenças Cardiovasculares/metabolismo , Músculo Liso Vascular/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Miócitos de Músculo Liso/metabolismo , Anticorpos Neutralizantes , Ferro/metabolismo
11.
Fish Shellfish Immunol ; 149: 109585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663462

RESUMO

Ferroptosis, a kind of programmed cell death, is characterized with iron-dependent lipid ROS buildup, which is considered as an important cellular immunity in resisting intracellular bacterial infection in mammalian macrophages. In this process, lipid ROS oxidizes the bacterial biofilm to inhibit intracellular bacteria. However, the function of ferroptosis in invertebrate remains unknown. In this study, the existence of ferroptosis in Apostichopus japonicus coelomocytes was confirmed, and its antibacterial mechanism was investigated. First, our results indicated that the expression of glutathione peroxidase (AjGPX4) was significantly inhibited by 0.21-fold (p < 0.01) after injecting A. japonicus with the ferroptosis inducer RSL3, and the contents of MDA (3.93-fold, p < 0.01), ferrous iron (1.40-fold, p < 0.01), and lipid ROS (3.10-fold, p < 0.01) were all significantly increased under this condition and simultaneously accompanied with mitochondrial contraction and disappearance of cristae, indicating the existence of ferroptosis in the coelomocytes of A. japonicus. Subsequently, the contents of ferrous iron (1.40-fold, p < 0.05), MDA (2.10-fold, p < 0.01), ROS (1.70-fold, p < 0.01), and lipid ROS (2.50-fold, p < 0.01) were all significantly increased, whereas the mitochondrial membrane potential and GSH/GSSG were markedly decreased by 0.68-fold (p < 0.05) and 0.69-fold (p < 0.01) under Vibrio splendidus (AJ01) infection. This process could be reversed by the iron-chelating agent deferoxamine mesylate, which indicated that AJ01 could induce coelomocytic ferroptosis. Moreover, the results demonstrated that the intracellular AJ01 load was clearly decreased to 0.49-fold (p < 0.05) and 0.06-fold (p < 0.01) after treating coelomocytes with RSL3 and ferrous iron, which indicated that enhanced ferroptosis could inhibit bacterial growth. Finally, subcellular localization demonstrated that ferrous iron efflux protein ferroportin (AjFPN) and intracellular AJ01 were co-localized in coelomocytes. After AjFPN interference (0.58-fold, p < 0.01), the signals of ferrous iron and lipid ROS levels in intracellular AJ01 were significantly reduced by 0.38-fold (p < 0.01) and 0.48-fold (p < 0.01), indicating that AjFPN was an important factor in the introduction of ferroptosis into intracellular bacteria. Overall, our findings indicated that ferroptosis could resist intracellular AJ01 infection via AjFPN. These findings provide a novel defense mechanism for aquatic animals against intracellular bacterial infection.


Assuntos
Ferroptose , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Ferroptose/efeitos dos fármacos , Stichopus/imunologia , Stichopus/microbiologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Imunidade Inata , Ferro/metabolismo , Vibrioses/veterinária , Vibrioses/imunologia
12.
J Integr Neurosci ; 23(1): 4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38287850

RESUMO

Heart, dentate nucleus, and dorsal root ganglia (DRG) are targets of tissue damage in Friedreich ataxia (FA). This report summarizes the histology and histopathology of iron in the main tissues affected by FA. None of the affected anatomical sites reveals an elevation of total iron levels. In the myocardium, a small percentage of fibers shows iron-reactive granular inclusions. The accumulation of larger iron aggregates and fiber invasion cause necrosis and damage to the contractile apparatus. In the dentate nucleus, the principal FA-caused tissue injury is neuronal atrophy and grumose reaction. X-ray fluorescence mapping of iron in the dentate nucleus in FA shows retention of the metal in the center of the collapsed structure. Immunohistochemistry of ferritin, a surrogate marker of tissue iron, confirms strong expression in oligodendrocytes of the efferent white matter of the dentate nucleus and abundance of ferritin-positive microglia in the atrophic gray matter. Iron dysmetabolism in DRG is complex and consists of prominent expression of ferritin in hyperplastic satellite cells and residual nodules, also a loss of the iron export protein ferroportin from the cytoplasm of the remaining DRG nerve cells.


Assuntos
Ataxia de Friedreich , Ferro , Humanos , Ferro/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Ferritinas/metabolismo , Neurônios/metabolismo , Citoplasma/metabolismo
13.
Asia Pac J Clin Nutr ; 33(2): 184-193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38794978

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.


Assuntos
Proteínas de Transporte de Cátions , Ferro , Placenta , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/sangue , Estudos de Casos e Controles , Adulto , Ferro/sangue , Ferro/metabolismo , Placenta/metabolismo , Proteínas de Transporte de Cátions/genética , Hepcidinas/sangue , Fatores de Risco , China/epidemiologia , Estado Nutricional
14.
J Clin Biochem Nutr ; 74(1): 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38292117

RESUMO

Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.

15.
Semin Cell Dev Biol ; 115: 27-36, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33386235

RESUMO

The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Ferro/metabolismo , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-36939203

RESUMO

Ferroportin (Fpn)-expressed at the plasma membrane of macrophages, enterocytes, and hepatocytes-mediates the transfer of cellular iron into the blood plasma. Under the control of the iron-regulatory hormone hepcidin, Fpn serves a critical role in systemic iron homeostasis. Whereas we have previously characterized human Fpn, a great deal of research in iron homeostasis and disorders utilizes mouse models. By way of example, the flatiron mouse, a model of classical ferroportin disease, bears the mutation H32R in Fpn and is characterized by systemic iron deficiency and macrophage iron retention. The flatiron mouse also appears to exhibit a manganese phenotype, raising the possibility that mouse Fpn serves a role in manganese metabolism. At odds with this observation, we have found that human Fpn does not transport manganese, so we considered the possibility that a species difference could explain this discrepancy. We tested the hypothesis that mouse but not human Fpn can transport manganese and performed a comparative analysis of mouse and human Fpn. We examined the functional properties of human Fpn, mouse Fpn, and mutant mouse Fpn by using radiotracer assays in RNA-injected Xenopus oocytes. We found that neither mouse nor human Fpn transports manganese. Mouse and human Fpn share identical properties with respect to substrate profile, calcium dependence, optimal pH, and hepcidin sensitivity. We have also demonstrated that Fpn is not an ATPase pump. Our findings validate the use of mouse models of ferroportin function in iron homeostasis and disease.

17.
J Biol Chem ; 298(12): 102667, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334631

RESUMO

The HFE (Homeostatic Fe regulator) gene is commonly mutated in hereditary hemochromatosis. Blood of (HFE)(-/-) mice and of humans with hemochromatosis contains toxic nontransferrin-bound iron (NTBI) which accumulates in organs. However, the chemical composition of NTBI is uncertain. To investigate, HFE(-/-) mice were fed iron-deficient diets supplemented with increasing amounts of iron, with the expectation that NTBI levels would increase. Blood plasma was filtered to obtain retentate and flow-through solution fractions. Liquid chromatography detected by inductively coupled plasma mass spectrometry of flow-through solutions exhibited low-molecular-mass iron peaks that did not increase intensity with increasing dietary iron. Retentates yielded peaks due to transferrin (TFN) and ferritin, but much iron in these samples adsorbed onto the column. Retentates treated with the chelator deferoxamine (DFO) yielded a peak that comigrated with the Fe-DFO complex and originated from iron that adhered to the column in the absence of DFO. Additionally, plasma from younger and older 57Fe-enriched HFE mice were separately pooled and concentrated by ultrafiltration. After removing contributions from contaminating blood and TFN, Mössbauer spectra were dominated by features due to magnetically interacting FeIII aggregates, with greater intensity in the spectrum from the older mice. Similar features were generated by adding 57FeIII to "pseudo plasma". Aggregation was unaffected by albumin or citrate at physiological concentrations, but DFO or high citrate concentrations converted aggregated FeIII into high-spin FeIII complexes. FeIII aggregates were retained by the cutoff membrane and adhered to the column, similar to the behavior of NTBI. A model is proposed in which FeII entering blood is oxidized, and if apo-TFN is unavailable, the resulting FeIII ions coalesce into FeIII aggregates, a.k.a. NTBI.


Assuntos
Hemocromatose , Ferro , Humanos , Camundongos , Animais , Ferro/metabolismo , Hemocromatose/genética , Transferrina , Ferritinas , Plasma
18.
J Neurochem ; 167(2): 248-261, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667496

RESUMO

Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.

19.
Curr Issues Mol Biol ; 45(12): 10193-10210, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132482

RESUMO

The present study aimed to investigate the impact of hydrogen (H2) on chronic intermittent hypoxia (CIH)-induced cardiac hypertrophy in mice by modulating iron metabolism. C57BL/6N mice were randomly allocated into four groups: control (Con), CIH, CIH + H2, and H2. The mice were exposed to CIH (21-5% FiO2, 3 min/cycle, 8 h/d), and received inhalation of a hydrogen-oxygen mixture (2 h/d) for 5 weeks. Cardiac and mitochondrial function, levels of reactive oxygen species (ROS), and iron levels were evaluated. The H9C2 cell line was subjected to intermittent hypoxia (IH) and treated with H2. Firstly, we found H2 had a notable impact on cardiac hypertrophy, ameliorated pathological alterations and mitochondrial morphology induced by CIH (p < 0.05). Secondly, H2 exhibited a suppressive effect on oxidative injury by decreasing levels of inducible nitric oxide synthase (i-NOS) (p < 0.05) and 4-hydroxynonenal (4-HNE) (p < 0.01). Thirdly, H2 demonstrated a significant reduction in iron levels within myocardial cells through the upregulation of ferroportin 1 (FPN1) proteins (p < 0.01) and the downregulation of transferrin receptor 1 (TfR1), divalent metal transporter 1 with iron-responsive element (DMT1(+ire)), and ferritin light chain (FTL) mRNA or proteins (p < 0.05). Simultaneously, H2 exhibited the ability to decrease the levels of Fe2+ and ROS in H9C2 cells exposed to IH (p < 0.05). Moreover, H2 mediated the expression of hepcidin, hypoxia-inducible factor-1α (HIF-1α) (p < 0.01), and iron regulatory proteins (IRPs), which might be involved in the regulation of iron-related transporter proteins. These results suggested that H2 may be beneficial in preventing cardiac hypertrophy, a condition associated with reduced iron toxicity.

20.
J Biol Inorg Chem ; 28(2): 173-185, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512071

RESUMO

Hereditary hemochromatosis is an iron-overload disease most often arising from a mutation in the Homeostatic Fe regulator (HFE) gene. HFE organs become overloaded with iron which causes damage. Iron-overload is commonly detected by NMR imaging, but the spectroscopic technique is insensitive to diamagnetic iron. Here, we used Mössbauer spectroscopy to examine the iron content of liver, spleen, kidney, heart, and brain of 57Fe-enriched HFE(-/-) mice of ages 3-52 wk. Overall, the iron contents of all investigated HFE organs were similar to the same healthy organ but from an older mouse. Livers and spleens were majorly overloaded, followed by kidneys. Excess iron was generally present as ferritin. Iron-sulfur clusters and low-spin FeII hemes (combined into the central quadrupole doublet) and nonheme high-spin FeII species were also observed. Spectra of young and middle-aged HFE kidneys were dominated by the central quadrupole doublet and were largely devoid of ferritin. Collecting and comparing spectra at 5 and 60 K allowed the presence of hemosiderin, a decomposition product of ferritin, to be quantified, and it also allowed the diamagnetic central doublet to be distinguished from ferritin. Hemosiderin was observed in spleens and livers from HFE mice, and in spleens from controls, but only when iron concentrations exceeded 2-3 mM. Even in those cases, hemosiderin represented only 10-20% of the iron in the sample. NMR imaging can identify iron-overload under non-invasive room-temperature conditions, but Mössbauer spectroscopy of 57Fe-enriched mice can detect all forms of iron and perhaps allow the process of iron-overloading to be probed in greater detail.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Camundongos , Animais , Ferro/metabolismo , Hemocromatose/genética , Hemocromatose/complicações , Hemossiderina , Espectroscopia de Mossbauer , Temperatura , Ferritinas , Sobrecarga de Ferro/genética , Compostos Ferrosos , Proteína da Hemocromatose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA