Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141769

RESUMO

Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.


Assuntos
Anexina A2 , Artrite Reumatoide , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante , Sinoviócitos , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/fisiopatologia , Proliferação de Células/genética , Células Cultivadas , Ativação Enzimática/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Fosforilação/genética , Ligação Proteica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sinoviócitos/citologia , Sinoviócitos/metabolismo
2.
Exp Cell Res ; 435(1): 113928, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190869

RESUMO

Abnormalities in the function of fibroblast-like synoviocytes (FLSs) are crucial factors leading to joint damage of rheumatoid arthritis. In recent years, the role of circular RNA (circRNA) in RA has gradually been revealed. However, the functional regulation of FLSs mediated by circRNA and its potential mechanisms remain unclear. In this study, we elucidated the expression profile of circRNA in FLSs, as well as the role and molecular mechanisms of circTldc1. Through sequencing and validation experiments on primary FLSs derived from collagen-induced arthritis (CIA) rats, we found that circTldc1 can promote FLSs proliferation and exacerbate CIA-induced joint damage. The data revealed that circTldc1's parent gene, Tldc1, is homologous to human Tldc1, and circTldc1 is located in the cytoplasm of FLSs, belonging to the exonic circRNA category. The results from bioinformatics analysis, molecular experiments on FLSs (manipulating circTldc1 expression in vitro), and animal experiments (local regulation of circTldc1 expression in vivo) collectively confirmed that circTldc1 promotes Tldc1 expression by targeting miR-485-5p. High expression of Tldc1 further enhances FLSs proliferation and inflammatory responses, thereby worsening joint damage in CIA rats. High expression of circTldc1 and its parent gene Tldc1 may serve as biomarkers for RA. Local regulation of circTldc1 and Tldc1 gene levels in the joint cavity may represent a potential strategy to improve joint damage and inflammation in RA.


Assuntos
Artrite Experimental , MicroRNAs , Sinoviócitos , Animais , Humanos , Ratos , Artrite Experimental/genética , Artrite Experimental/metabolismo , Proliferação de Células/genética , Células Cultivadas , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Sinoviócitos/metabolismo
3.
J Cell Mol Med ; 28(9): e18377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686488

RESUMO

There are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers. The qRT-PCR assay was hired to assess gene mRNA level. Western blot assay and immunohistochemistry were hired to verify the protein level. CCK-8 assay was hired to detect cell viability. Human fibroblast-like synoviocytes (FLSs) were cultured to confirm the effects of GPX4 and indicated inhibitors, and further verified the effects of GPX4 and ferroptosis inhibitors in TMJOA model rats. Markers of ferroptosis including 8-hidroxy-2-deoxyguanosine (8-OHdG) and iron were notably increased in TMJOA tissues and primary OA-FLSs. However, the activity of the antioxidant system including the glutathione peroxidase activity, glutathione (GSH) contents, and glutathione/oxidized glutathione (GSH/GSSG) ratio was notably inhibited in TMJOA tissues, and the primary OA-FLSs. Furthermore, the glutathione peroxidase 4 (GPX4) expression was down-regulated in TMJOA tissues and primary OA-FLSs. Animal and cell experiments have shown that ferroptosis inhibitors notably inhibited ferroptosis and promoted HLS survival as well as up-regulated GPX4 expression. Also, GPX4 knockdown promoted ferroptosis and GPX4 overexpression inhibited ferroptosis. GPX4 also positively regulated cell survival which was the opposite with ferroptosis. In conclusion, GPX4 and ferroptosis regulated the progression of TMJOA. Targeting ferroptosis might be an effective therapeutic strategy for TMJOA patients in the clinic.


Assuntos
Ferroptose , Osteoartrite , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Articulação Temporomandibular , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Fibroblastos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ratos Sprague-Dawley , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Articulação Temporomandibular/patologia , Articulação Temporomandibular/metabolismo
4.
BMC Immunol ; 25(1): 36, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902605

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic immune system disease with a high disability rate threatening the living quality of patients. Identifying potential biomarkers for RA is of necessity to improve the prevention and management of RA. OBJECTIVES: This study focused on miR-146b-3p evaluating its clinical significance and revealing the underlying regulatory mechanisms. MATERIALS AND METHODS: A total of 107 RA patients were enrolled, and both serum and synovial tissues were collected. Another 78 osteoarthritis patients (OA, providing synovial tissues), and 72 healthy individuals (providing serum samples) were enrolled as the control group. The expression of miR-146b-3p was analyzed by PCR and analyzed with ROC and Pearson correlation analyses evaluating its significance in diagnosis and development prediction of RA patients. In vitro, MH7A cells were treated with TNF-α. The regulation of cell proliferation, motility, and inflammation by miR-146b-3p was assessed by CCK8, Transwell, and ELISA assays. RESULTS: Significant upregulation of miR-146b-3p was observed in serum and synovial tissues of RA patients, which distinguished RA patients and were positively correlated with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), anti-cyclic citrullinated peptide antibodies (anti-CCP), and rheumatoid factor (RF) of RA patients. TNF-α promoted the proliferation and motility of MH7A cells and induced significant inflammation in cells. Silencing miR-146b-3p alleviated the effect of TNF-α and negatively regulated the expression of HMGCR. The knockdown of HMGCR reversed the protective effect of miR-146b-3p silencing on TNF-α-stimulated MH7A cells. CONCLUSIONS: Increased miR-146b-3p served as a biomarker for the diagnosis and severity of RA. Silencing miR-146b-3p could suppress TNF-α-induced excessive proliferation, motility, and inflammation via regulating HMGCR in MH7A cells.


Assuntos
Artrite Reumatoide , Movimento Celular , Proliferação de Células , MicroRNAs , Fator de Necrose Tumoral alfa , Artrite Reumatoide/imunologia , Artrite Reumatoide/diagnóstico , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Linhagem Celular , Regulação para Cima , Biomarcadores/metabolismo , Inflamação/imunologia , Membrana Sinovial/metabolismo , Adulto , Idoso
5.
Clin Immunol ; 264: 110255, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763433

RESUMO

Fibroblast-like synoviocytes (FLS) play critical roles in rheumatoid arthritis (RA). Itaconate (ITA), an endogenous metabolite derived from the tricarboxylic acid (TCA) cycle, has attracted attention because of its anti-inflammatory, antiviral, and antimicrobial effects. This study evaluated the effect of ITA on FLS and its potential to treat RA. ITA significantly decreased FLS proliferation and migration in vitro, as well as mitochondrial oxidative phosphorylation and glycolysis measured by an extracellular flux analyzer. ITA accumulates metabolites including succinate and citrate in the TCA cycle. In rats with type II collagen-induced arthritis (CIA), intra-articular injection of ITA reduced arthritis and bone erosion. Irg1-deficient mice lacking the ability to produce ITA had more severe arthritis than control mice in the collagen antibody-induced arthritis. ITA ameliorated CIA by inhibiting FLS proliferation and migration. Thus, ITA may be a novel therapeutic agent for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Movimento Celular , Proliferação de Células , Fibroblastos , Succinatos , Sinoviócitos , Animais , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Movimento Celular/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Proliferação de Células/efeitos dos fármacos , Succinatos/farmacologia , Ratos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Camundongos , Camundongos Knockout , Células Cultivadas , Camundongos Endogâmicos DBA , Ciclo do Ácido Cítrico/efeitos dos fármacos
6.
J Autoimmun ; 143: 103159, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141420

RESUMO

OBJECTIVES: To evaluate the in vitro effect of tofacitinib on autophagy activity of psoriatic arthritis (PsA) fibroblast-like synoviocytes (FLS), and to confirm its activity on inflammatory and invasive properties of FLS and synovial cells, deepening the impact on mitochondrial function. METHODS: FLS, peripheral blood mononuclear cells (PBMCs), and synovial cells from active PsA patients were cultured with tofacitinib 1 µM or vehicle control for 24 h. Autophagy was measured by Western blot and by fluorescence microscopy. Chemokines/cytokines released into culture supernatants were quantified by ELISA, while invasive properties of FLS by migration assays. Specific mitochondrial probes were adopted to measure intracellular reactive oxygen species (ROS), mitochondrial potential, morphology, turnover and mitophagy. Oxygen consumption rate (OCR), reflecting oxidative phosphorylation, was quantified using the Seahorse technology. Differences were determined by adopting the non-parametric Wilcoxon signed rank test. RESULTS: 18 patients with moderately-to-severely active PsA were enrolled. Tofacitinib significantly increased the levels of the autophagy markers LC3-II and ATG7 in PsA FLS compared to vehicle control, suggesting an increase in spontaneous autophagy activity; no effect was highlighted in PBMCs and synovial cells cultures. Tofacitinib reduced migration properties of PsA FLS, and reduced MCP-1 and IL-6 release into FLS and synovial cells cultures supernatants. Furthermore, tofacitinib decreased intracellular ROS production, increased basal OCR, ATP production and maximal respiratory capacity, and enhanced mitophagy and mitochondrial turnover. CONCLUSIONS: The JAK inhibitor tofacitinib reduces the pro-invasive and pro-inflammatory properties of PsA FLS. Autophagy induction and mitochondrial quality control modulation by tofacitinib might contribute to FLS function restoration.


Assuntos
Artrite Psoriásica , Piperidinas , Pirimidinas , Sinoviócitos , Humanos , Artrite Psoriásica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Leucócitos Mononucleares , Transdução de Sinais , Autofagia , Fibroblastos/metabolismo , Mitocôndrias , Células Cultivadas , Membrana Sinovial/metabolismo
7.
Cytokine ; 179: 156616, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38626647

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 µM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS: TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1ß, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION: The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.


Assuntos
Apigenina , Artrite Reumatoide , Receptor para Produtos Finais de Glicação Avançada , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Apigenina/farmacologia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Citocinas/metabolismo , Animais , Inflamação/metabolismo , Inflamação/tratamento farmacológico
8.
Inflamm Res ; 73(3): 415-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265688

RESUMO

BACKGROUND: Mammalian STE20-like kinase 1 (MST1) is involved in the occurrence of cancer and autoimmune diseases by regulating cell proliferation, differentiation, apoptosis and other functions. However, its role and downstream targets in rheumatoid arthritis (RA) remain unclear. METHODS: The model of RA fibroblast-like synoviocytes (RA-FLSs) overexpressing MST1 was constructed by lentiviral transfection in vitro and analyzed the effects of MST1 on apoptosis, migration, invasion, and inflammation of RA-FLSs. The effect of MST1 on joint synovial membrane inflammation and bone destruction was observed in vivo by establishing a rat model of arthritis with complete Freund's adjuvant. RESULTS: MST1 is down-regulated in RA-FLSs, and up-regulation of MST1 inhibits the survival, migration, invasion and inflammation of RA-FLSs. Mechanistically, MST1 inhibits SIRT3/mTOR-signaling pathway, inducing decreased mitochondrial autophagy and increased mitochondrial fission, resulting in mitochondrial morphological abnormalities and dysfunction, and ultimately increased apoptosis. We have observed that activation of MST1 alleviates synovial inflammation and bone erosion in vivo. CONCLUSIONS: MST1 reduces the survival, migration, invasion and inflammation of FLSs by inhibiting the SIRT3/mTOR axis to reduce mitochondrial autophagy and promote mitochondrial division, thereby achieving the potential role of relieving rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Doenças Mitocondriais , Sirtuína 3 , Sinoviócitos , Animais , Ratos , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Inflamação/metabolismo , Mamíferos , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Serina-Treonina Quinases TOR/metabolismo
9.
Microbiol Immunol ; 68(3): 100-110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129937

RESUMO

Circular RNAs (circRNAs) play functional roles in rheumatoid arthritis (RA) progression. Fibroblast-like synoviocytes (RASFs) are the main effectors in RA development. In this study, we explored the function and mechanism of circ_0008410 in RASFs. qRT-PCR was used to detect the expression of circ_0008410, microRNA-149-5p (miR-149-5p), and homeodomain-interacting protein kinase 2 (HIPK2). Cell counting kit-8, EdU assay, flow cytometry, and transwell assay were performed to evaluate cell proliferation, apoptosis, migration, and invasion. Western blot measured the protein levels of related markers and HIPK2. The levels of IL-1ß, TNF-α, and IL-6 were tested by corresponding ELISA kits and Western blot. The combination between miR-149-5p and circ_0008410 or HIPK2 was detected by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Our data showed that circ_0008410 and HIPK2 were elevated, while miR-149-5p was downregulated in RA synovial tissues and RASFs. Circ_0008410 promoted RASF proliferation, migration, invasion, and inflammation while inhibiting apoptosis. MiR-149-5p was a target of circ_0008410, and its overexpression could reverse the promoting effects of circ_0008410 on RASF dysfunction. Moreover, miR-149-5p could target HIPK2 to suppress RASF proliferation, migration, invasion, and inflammation. Collectively, circ_0008410 promoted RASF dysfunction via miR-149-5p/HIPK2, which might provide a potential target for RA therapy.


Assuntos
Artrite Reumatoide , MicroRNAs , Sinoviócitos , Humanos , Membrana Sinovial , Apoptose/genética , Artrite Reumatoide/genética , Proliferação de Células , Fibroblastos , Inflamação , MicroRNAs/genética , Proteínas de Transporte , Proteínas Serina-Treonina Quinases/genética
10.
Mol Biol Rep ; 51(1): 356, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401037

RESUMO

BACKGROUND: Synovial hyperplasia caused by rheumatoid arthritis (RA), an autoimmune inflammatory disease, leads to the destruction of the articular cartilage and bone. A member of the tumor necrosis factor superfamily, Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) has been shown to correlate with the pathogenesis of RA. METHODS: We used cDNA microarray analysis to compare the expression of genes in rheumatoid fibroblast-like synoviocytes with and without LIGHT stimulation. RESULTS: Significant changes in gene expression (P-values < 0.05 and fold change ≥ 2.0) were associated mainly with biological function categories of glycoprotein, glycosylation site as N-linked, plasma membrane part, integral to plasma membrane, intrinsic to plasma membrane, signal, plasma membrane, signal peptide, alternative splicing, and topological domain as extracellular. CONCLUSIONS: Our results indicate that LIGHT may regulate the expression in RA-FLS of genes which are important in the differentiation of several cell types and in cellular functions.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Membrana Sinovial/metabolismo , Artrite Reumatoide/metabolismo , Sinoviócitos/metabolismo , Fibroblastos/metabolismo , Glicoproteínas/genética , Expressão Gênica , Células Cultivadas
11.
J Nanobiotechnology ; 22(1): 383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951875

RESUMO

The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.


Assuntos
Artrite Reumatoide , Proliferação de Células , Grafite , Macrófagos , Morfinanos , Pontos Quânticos , Sinoviócitos , Morfinanos/farmacologia , Morfinanos/química , Animais , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Grafite/química , Grafite/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos Sprague-Dawley , Camundongos , Humanos , Células RAW 264.7 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38982914

RESUMO

Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-ß-boswellic acid (AKBA) modulates FLS activation remains unclear. This study aims to assess the beneficial effects of AKBA through both in vitro and in vivo investigations. Network pharmacology evaluation is used to identify potential targets of AKBA in OA. We evaluate the effects of AKBA on FLSs activation in vitro and the regulatory role of AKBA on the Nrf2/HO-1 signaling pathway. ML385 (an Nrf2 inhibitor) is used to verify the binding of AKBA to its target in FLSs. We validate the in vivo efficacy of AKBA in alleviating OA using anterior cruciate ligament transection and destabilization of the medial meniscus (ACLT+DMM) in a rat model. Network pharmacological analysis reveals the potential effect of AKBA on OA. AKBA effectively attenuates lipopolysaccharide (LPS)-induced abnormal migration and invasion and the production of inflammatory mediators, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) in FLSs, contributing to the restoration of the synovial microenvironment. After treatment with ML385, the effect of AKBA on FLSs is reversed. In vivo studies demonstrate that AKBA mitigates synovial inflammation and fibrotic responses induced by ACLT+DMM in rats via activation of the Nrf2/HO-1 axis. AKBA exhibits theoretical potential for alleviating OA progression through the Nrf2/HO-1 pathway and represents a viable therapeutic candidate for this patient population.

13.
Biochem Genet ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480669

RESUMO

Rheumatoid arthritis (RA) is a prevalent inflammatory disorder affecting about 1% of the global population. The ubiquitin-specific protease 2 (USP2) is known to have a substantial influence on the regulation of several cellular processes. Both in vivo (using rats with collagen-induced arthritis, CIA) and in vitro (using human fibroblast-like synoviocytes, HFLS-RA) models of RA were used to examine the role of USP2 in RA. The proliferation of HFLS-RA cells was assessed using the cell counting kit 8 test and EdU staining. The technique used for the assessment of gene expression was quantitative real-time PCR. Protein expression was quantified using Western blot (WB) analysis, while the quantities of inflammatory factors and matrix metalloproteinases were assessed using an ELISA test. The co-immunoprecipitation and ubiquitination tests investigated the relationships between proteins and the underlying molecular pathways. The results of this study demonstrate an upregulation of USP2 expression in both vivo and vitro models of RA. In addition, our findings indicate that the overexpression of USP2 notably exacerbates both proliferation and inflammation. The consistent downregulation of USP2 resulted in a reduction in the secretion of inflammatory cytokines and a suppression of cellular proliferation. Furthermore, it was shown that USP2 interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2) and facilitates the removal of ubiquitination chains from TRAF2, enhancing its stability. Our findings propose that USP2 functions as a favorable modulator of proliferation and inflammatory reactions in HFLS-RA, thereby indicating its potential as a therapeutic target for the treatment of RA.

14.
Inflammopharmacology ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714604

RESUMO

Autoimmune diseases hold significant importance in the realm of medical research, prompting a thorough exploration of potential therapeutic interventions. One crucial aspect of this exploration involves understanding the intricate processes of histone acetylation and deacetylation. Histone acetylation, facilitated by histone acetyl transferases (HATs), is instrumental in rendering DNA transcriptionally active. Conversely, histone deacetylases (HDACs) are responsible for the removal of acetyl groups, influencing gene expression regulation. The upregulation of HDACs, observed in various cancers, has steered attention towards histone deacetylase inhibitors (HDACi) as promising anti-cancer agents. Beyond cancer, HDACi has demonstrated anti-inflammatory properties, prompting interest in their potential therapeutic applications for inflammatory diseases such as rheumatoid arthritis (RA). RA, characterized by the immune system erroneously attacking healthy cells, leads to joint inflammation. Recent studies suggest that HDACi could offer a viable therapeutic strategy for RA, with potential mechanisms including the inhibition of synovial tissue growth and suppression of pro-inflammatory cytokines. Furthermore, HDACi may exert protective effects on bone and cartilage, common targets in RA pathology. In-depth investigations through in vivo and histopathology studies contribute to the ongoing discourse on the therapeutic benefits of HDACis in the context of RA treatment.

15.
Mod Rheumatol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38722030

RESUMO

OBJECTIVES: This study evaluated the expression and significance of SNHG3 in Rheumatoid arthritis (RA) aiming to explore a biomarker and regulator for RA. METHODS: The expression of SNHG3 in serum and synovial tissue was compared between RA patients and healthy individuals using PCR. The RA animal models were induced by the porcine type II collagen with Wistar rats and validated by the foot volume and AI score. The human fibroblast-like synoviocytes (H-FLS) were treated with LPS to mimic the injury during RA onset and the cell growth was assessed by CCK8 assay. RESULTS: SNHG3 was significantly downregulated in the serum and synovial tissue of RA patients compared with healthy individuals. Downregulated SNHG3 could discriminate RA patients from healthy individuals with high sensitivity (0.875) and specificity (0.844). Porcine type II collagen induced increasing foot volume and AI scores of rats and SNHG3 was downregulated in RA rats. In LPS-induced H-FLS, SNHG3 negatively regulated miR-128-3p, and the alleviated effect of SNHG3 overexpression on cellular inflammation and oxidative stress was reversed by miR-128-3p upregulation. CONCLUSIONS: Serum SNHG3 was considered a potential diagnostic biomarker for RA from healthy individuals. SNHG3 regulated inflammatory response and oxidative stress via negatively modulating miR-128-3p.

16.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1947-1955, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812207

RESUMO

This study aims to decipher the mechanism of sinomenine in inhibiting platelet-derived growth factor/platelet-derived growth factor receptor(PDGF/PDGFR) signaling pathway in rheumatoid arthritis-fibroblast-like synoviocyte(RA-FLS) migration induced by neutrophil extracellular traps(NETs). RA-FLS was isolated from the synovial tissue of 3 RA patients and cultured. NETs were extracted from the peripheral venous blood of 4 RA patients and 4 healthy control(HC). RA-FLS was classified into control group, HC-NETs group, RA-NETs group, RA-NETs+sinomenine group and RA-NETs+sinomenine+CP-673451 group. RNA-sequencing(RNA-seq) was conducted to identify the differentially expressed genes between HC-NETs and RA-NETs groups. Sangerbox was used to perform the Gene Ontology(GO) function and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape was employed to build the protein-protein interaction(PPI) network. AutoDock Vina and PyMOL were used for molecular docking of sinomenine with PDGFß and PDGFRß. The cell proliferation and migration were determined by the cell counting kit-8(CCK-8) and cell scratch assay, respectively. Western blot was employed to determine the protein level of PDGFRß. Real-time quantitative polymerase chain reaction(RT-qPCR) was carried out to determine the mRNA levels of matrix metalloproteinases(MMPs). The results revealed that neutrophils in RA patients were more likely to produce NETs. Compared with HC-NETs group, RA-NETs group showed up-regulated expression of PDGFß and PDGFRß. Compared with control group, RA-NETs group showed increased cell proliferation and migration and up-regulated protein level of PDGFRß and mRNA levels of PDGFß, PDGFRß, MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs group, RA-NETs+sinomenine group presented decreased cell proliferation and migration and down-regulated protein and mRNA level of PDGFRß and mRNA levels of MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs+sinomenine group, the proliferation ability of RA-NETs+sinomenine+CP-673451 group decreased(P<0.05). The findings prove that sinomenine reduces the RA-NETs-induced RA-FLS migration by inhibiting PDGF/PDGFR signaling pathway, thus mitigating RA.


Assuntos
Artrite Reumatoide , Movimento Celular , Morfinanos , Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Sinoviócitos , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Morfinanos/farmacologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Masculino , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
17.
Am J Physiol Cell Physiol ; 324(5): C1089-C1100, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878846

RESUMO

The objective of this study is to explore the specific roles of a crucial N6-methyladenosine (m6A) methyltransferase, methyltransferase-like 14 (METTL14), in fibroblast-like synoviocytes (FLSs) activation of rheumatoid arthritis (RA). RA rat model was induced by administering intraperitoneally collagen antibody alcohol. Primary fibroblast-like synoviocytes (FLSs) were isolated from joint synovium tissues in rats. shRNA transfection tools were used to downregulate METTL14 expression in vivo and vitro. The injury of joint synovium was shown by hematoxylin and eosin (HE) staining. The cell apoptosis of FLSs was determined by flow cytometry. The levels of IL-6, IL-18, and C-X-C motif chemokine ligand (CXCL)10 in serum and culture supernatants were measured by ELISA kits. The expressions of LIM and SH3 domain protein 1 (LASP1), p-SRC/SRC, and p-AKT/AKT in FLSs and joint synovium tissues were determined by Western blots. The expression of METTL14 was greatly induced in the synovium tissues of RA rats compared with normal control rats. Compared with sh-NC-treated FLSs, METTL14 knockdown significantly increased cell apoptosis, inhibited cell migration and invasion, and suppressed the production of IL-6, IL-18, and CXCL10 induced by TNF-α. METTL14 silencing suppresses the expression of LASP1 and the activation of Src/AKT axis induced by TNF-α in FLSs. METTL14 improves the mRNA stability of LASP1 through m6A modification. In contrast, these were reversed by LASP1 overexpression. Moreover, METTL14 silencing clearly alleviates FLSs activation and inflammation in a RA rat model. These results suggested that METTL14 promotes FLSs activation and related inflammatory response via the LASP1/SRC/AKT signaling pathway and identified METTL14 as a potential target for treating RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Ratos , Animais , Sinoviócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interleucina-18/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Artrite Reumatoide/genética , Células Cultivadas , Fibroblastos/metabolismo , Metiltransferases/genética , Proliferação de Células , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
18.
Clin Immunol ; 257: 109850, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013165

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Humanos , Ratos , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Epóxido Hidrolases/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
19.
Mol Med ; 29(1): 38, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959556

RESUMO

BACKGROUND: Chronic inflammation, mainly derived from fibroblast-like synoviocytes (FLSs), plays a central role in the pathomechanism of osteoarthritis (OA). Recently, epithelial-mesenchymal transition (EMT) signaling was found to be activated in OA-derived FLSs with a pro-inflammatory phenotype. However, the role of EMT signaling in regulating FLS function and OA-related inflammation remains unknown. METHODS: The synovium of OA patients were evaluated for EMT and inflammation markers. The FLSs with activated EMT signaling were co-cultured with chondrocytes (chond). Gene expression of OA synovial samples were analyzed. The role of receptor tyrosine kinase C-kit was investigated in OA-FLSs and an OA rat model. The downstream pathways driven by C-kit were explored in OA-FLSs. RESULTS: EMT marker N-cadherin (N-CDH) was upregulated in 40.0% of the OA samples. These N-CDH+ OA samples showed higher expression of pro-inflammatory factors. In co-culture, FLSs derived from N-CDH+ OA samples induced a typical degenerative phenotype of chonds and stimulated their production of matrix degrading enzymes. C-kit was significantly upregulated and spatially co-localized with N-CDH in N-CDH+ OA samples. In OA-FLSs, C-kit activated intracellular EMT signaling and induced destructive features of OA-FLSs. In OA rat model, C-kit largely promoted synovial inflammation and cartilage destruction, whereas knocking-down C-kit significantly restored the health of OA joints. Using GSK3ß S9A mutant, we demonstrated that C-kit drives EMT signaling in OA-FLS by promoting phosphorylation of GSK3ß and nuclear retention of the EMT transcription factor Snail. CONCLUSION: C-kit drives EMT signaling in OA-FLSs and promotes a destructive FLS phenotype, leading to synovial inflammation and cartilage destruction.


Assuntos
Transição Epitelial-Mesenquimal , Osteoartrite , Ratos , Animais , Glicogênio Sintase Quinase 3 beta/genética , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Inflamação/metabolismo , Fenótipo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
20.
Clin Exp Immunol ; 211(1): 46-56, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36610698

RESUMO

Glucose 6-phosphate isomerase (G6PI) is an indicator to assist in diagnosis of rheumatoid arthritis (RA) and monitor the disease. It also plays a key role in proliferating RA synovial tissues, pannus formation, and invasion and destruction of articular cartilage. In this study, we synthesized nanoparticles targeting G6PI (siG6PI-MSN) using mesoporous silica nanocarriers (MSN) and small interfering RNA (siRNA), followed by identifying the characteristics and functions, and preliminarily exploring their application in the treatment of RA in vivo with a type II collagen-induced arthritis (CIA) rat model. It showed that the synthetic functionalized carrier had a regular pore structure and a specific volume and surface area. No obvious hemolysis or toxicity of the carrier was found when its concentration was below 100 µg/ml. Cytological results in vitro suggested that siG6PI-MSN significantly inhibited G6PI expression and reduced the ability of proliferation, migration, and invasion of FLSs, compared with the siNC-MSN group. In vivo results in the CIA rat model showed that the arthritis index and degree of joint swelling among rats in the siG6PI-MSN-treatment group were significantly lower than those in the control group. Moreover, the number of FLSs in Synovium and the levels of TNF α and IL-1 ß were also significantly decreased in the siG6PI-MSN group. Histopathology of the synovial tissue and cartilage revealed siG6PI-MSN treatment significantly reduced the pathological manifestations of arthritis. In conclusion, siG6PI-MSN effectively suppresses the proliferation and invasive growth of synovial tissue and improve joint swelling and inflammatory infiltration, thereby preventing joint damage in RA. This carrier may be a new therapeutic measure for RA, with potential social and economic benefits.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Ratos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/patologia , Movimento Celular , Glucose-6-Fosfato Isomerase/metabolismo , Glucose-6-Fosfato Isomerase/farmacologia , RNA Interferente Pequeno/metabolismo , Membrana Sinovial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA