Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biometrics ; 80(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38647000

RESUMO

Fish growth models are crucial for fisheries stock assessments and are commonly estimated using fish length-at-age data. This data is widely collected using length-stratified age sampling (LSAS), a cost-effective two-phase response-selective sampling method. The data may contain age measurement errors (MEs). We propose a methodology that accounts for both LSAS and age MEs to accurately estimate fish growth. The proposed methods use empirical proportion likelihood methodology for LSAS and the structural errors in variables methodology for age MEs. We provide a measure of uncertainty for parameter estimates and standardized residuals for model validation. To model the age distribution, we employ a continuation ratio-logit model that is consistent with the random nature of the true age distribution. We also apply a discretization approach for age and length distributions, which significantly improves computational efficiency and is consistent with the discrete age and length data typically encountered in practice. Our simulation study shows that neglecting age MEs can lead to significant bias in growth estimation, even with small but non-negligible age MEs. However, our new approach performs well regardless of the magnitude of age MEs and accurately estimates SEs of parameter estimators. Real data analysis demonstrates the effectiveness of the proposed model validation device. Computer codes to implement the methodology are provided.


Assuntos
Simulação por Computador , Peixes , Animais , Peixes/crescimento & desenvolvimento , Modelos Estatísticos , Pesqueiros/estatística & dados numéricos , Biometria/métodos , Funções Verossimilhança , Viés
2.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339568

RESUMO

This study is related to Smart Aqua Farm, which combines artificial intelligence (AI) and Internet of things (IoT) technology. This study aimed to monitor fish growth in indoor aquaculture while automatically measuring the average size and area in real time. Automatic fish size measurement technology is one of the essential elements for unmanned aquaculture. Under the condition of labor shortage, operators have much fatigue because they use a primitive method that samples the size and weight of fish just before fish shipment and measures them directly by humans. When this kind of process is automated, the operator's fatigue can be significantly reduced. Above all, after measuring the fish growth, predicting the final fish shipment date is possible by estimating how much feed and time are required until the fish becomes the desired size. In this study, a video camera and a developed light-emitting grid panel were installed in indoor aquaculture to acquire images of fish, and the size measurement of a mock-up fish was implemented using the proposed method.


Assuntos
Aquicultura , Inteligência Artificial , Humanos , Animais , Aquicultura/métodos , Peixes , Sistemas Computacionais , Tecnologia
3.
Arch Microbiol ; 205(3): 100, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862208

RESUMO

Chicken feather meal has had a significant biofertilizer approach in recent years. The current study aims to assess feather biodegradation to promote plant and fish growth. The Geobacillus thermodenitrificans PS41 strain was more efficient in feather degradation. Feather residues were separated after degradation and evaluated under a scanning electron microscope (SEM) to detect bacterial colonization on feather degradation. It was observed that the rachi and barbules were entirely degraded. The complete degradation by PS41 suggests a relatively more efficient feather degradation strain. According to Fourier-transform infrared spectroscopy (FT-IR) studies, PS41 biodegraded feathers contain the functional groups of aromatic, amine, and nitro compounds. The present study suggested that biologically degraded feather meal improved plant growth. The feather meal combined with nitrogen-fixing bacterial strain showed the highest efficiency. The biologically degraded feather meal and Rhizobium combination induced physical and chemical changes in the soil. It is directly involved in soil amelioration, plant growth substance, and soil fertility, enhancing a healthy crop environment. The feather meal 4 and 5% was used as a feed diet of common carp (Cyprinus carpio) to increase growth performances and feed utilization parameters. In hematological and histological studies of formulated diets, significantly no toxic effects occurred in fish blood, gut, or fimbriae.


Assuntos
Carpas , Vigna , Animais , Plumas , Galinhas , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Fish Physiol Biochem ; 49(1): 169-189, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680627

RESUMO

The aim of the present work was to investigate the influence of fasting and refeeding on body condition, gut physiology and microbiota in reared O. mykiss. Ninety-six fish were randomly allotted among three groups subjected to different feeding plan: C (control, fed for 5 weeks); R (restricted ration over 3 weeks followed by 2 weeks feeding); F (fasted over 3 weeks followed by 2 weeks feeding) in a well's fresh water flow-through rearing plan. Sampling occurred at 0, 1, 2, 4, 7, 14 days during the refeeding period. At day 0 and throughout the feeding period until day 14, the weight of the fish was significantly affected by the feeding restriction. Feed deprivation reduced significantly the viscerosomatic and hepatosomatic indexes. Brush border membrane enzymes' specific activity was modulated by feeding regimes until day 7, to level in all experimental groups at day 14. At the end of the restricted/fasted period, the microbiota of the C group was made up of 70% of Actinobacteria, 24% of Proteobacteria, 4.2% of Firmicutes and < 1% of Bacteroides, while the restricted and fasted group were characterized by a strong reduction of Actinobacteria, and a significant increase in Bacteroidetes and Firmicutes. The feed deprivation determined a dysbiosis, allowing the development of different commensal or pathogenic bacteria. In conclusion, the effects of 2 weeks of feed deprivation, excluding those related to body weight, are gradually mitigated by refeeding, which allows the restoration of digestive functions and a healthy intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Oncorhynchus mykiss , Animais , Jejum , Ração Animal/análise
5.
J Aquat Anim Health ; 35(1): 41-49, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36861820

RESUMO

OBJECTIVE: The study aimed to evaluate the effects of phosphorus (P) deficiency in diets on growth performance, hepatic lipid metabolism, and antioxidant capacity in Yellow River Carp Cyprinus carpio haematopterus. METHODS: In this study, 72 healthy experimental fish (initial weight = 12.0 ± 0.1 g [mean ± SE]) were randomly selected and distributed to two groups, with three replicates in each group. The groups were fed either a P-sufficient diet or a P-deficient diet for 8 weeks. RESULT: The P-deficient feed significantly decreased the specific growth rate, feed efficiency, and condition factor of Yellow River Carp. Fish that were fed the P-deficient feed demonstrated higher contents of triglyceride, total cholesterol (T-CHO), and low-density lipoprotein cholesterol in the plasma and a higher T-CHO content in the liver compared to the P-sufficient diet group. In addition, the P-deficient diet significantly reduced the catalase activity level, decreased the glutathione content, and increased the malondialdehyde content in the liver and in the plasma. Furthermore, P deficiency in the diet significantly downregulated the messenger RNA expression of nuclear erythroid 2-related factor 2 and peroxisome proliferator-activated receptor α, whereas it upregulated the messenger RNA expression of tumor necrosis factor α and fatty acid synthase in the liver. CONCLUSION: Dietary P deficiency reduced fish growth performance, induced fat deposition and oxidative stress, and impaired liver health.


Assuntos
Carpas , Fósforo na Dieta , Animais , Antioxidantes/metabolismo , Fósforo na Dieta/metabolismo , Metabolismo dos Lipídeos , Fósforo , Dieta/veterinária , Fígado/metabolismo , Colesterol , Ração Animal/análise , Suplementos Nutricionais
6.
Environ Manage ; 70(3): 431-447, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792915

RESUMO

Control of hypoxia is a key element of water quality management, and guidelines are usually based on qualitative reviews of hypoxia impacts. In this study we use segmented regression to identify both thresholds for growth reduction and rate of decline of fish growth and food consumption under hypoxia; and then evaluate whether current freshwater guidelines for dissolved oxygen based on qualitative reviews are consistent with the quantitative analysis of hypoxia thresholds. Segmented regressions were fit to data from published growth-hypoxia studies for freshwater (N = 17) and marine fishes (N = 13). To understand potential drivers of hypoxia tolerance, we also modelled thresholds as simple functions of environmental and ecological covariates for each species including trophic level, marine vs. freshwater environment, maximum fish length, fish weight, and maximum temperature tolerance. The average threshold for growth reduction (Gcrit; 5.1 mg·l-1 DO) and decreased food consumption (Ccrit = 5.6 mg·l-1 DO) were not significantly different, and did not differ between marine and freshwater taxa. However, salmonids showed a significantly steeper decline in growth with increasing hypoxia relative to other taxa. Growth declined by 22% for every mg·l-1 reduction in DO below average Gcrit, and significant regressions indicate that warmwater (R2 = 0.25) and smaller-bodied (R2 = 0.44) species are more likely to be hypoxia tolerant. Observed mean Gcrit and Ccrit in the range of 5-6 mg·l-1 broadly match minimum water quality guidelines for the protection of aquatic life in freshwater in representative industrialized countries. However, this is much higher than the definition of hypoxia typically used in marine systems (2-2.5 mg·l-1), indicating a need to reconcile definition of hypoxia in the marine environment with empirical data. The principal challenge in freshwater hypoxia management is now translating discretionary guidelines into effective regulatory frameworks to reduce the incidence and severity of hypoxia.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Animais , Peixes , Água Doce/análise , Hipóxia , Oxigênio/análise , Poluentes Químicos da Água/análise
7.
Glob Chang Biol ; 26(10): 5661-5678, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32741054

RESUMO

Marine ecosystems, particularly in high-latitude regions such as the Arctic, have been significantly affected by human activities and contributions to climate change. Evaluating how fish populations responded to past changes in their environment is helpful for evaluating their future patterns, but is often hindered by the lack of long-term biological data available. Using otolith increments of Northeast Arctic cod (Gadus morhua) as a proxy for individual growth, we developed a century-scale biochronology (1924-2014) based on the measurements of 3,894 fish, which revealed significant variations in cod growth over the last 91 years. We combined mixed-effect modeling and path analysis to relate these growth variations to selected climate, population and fishing-related factors. Cod growth was negatively related to cod population size and positively related to capelin population size, one of the most important prey items. This suggests that density-dependent effects are the main source of growth variability due to competition for resources and cannibalism. Growth was also positively correlated with warming sea temperatures but negatively correlated with the Atlantic Multidecadal Oscillation, suggesting contrasting effects of climate warming at different spatial scales. Fishing pressure had a significant but weak negative direct impact on growth. Additionally, path analysis revealed that the selected growth factors were interrelated. Capelin biomass was positively related to sea temperature and negatively influenced by herring biomass, while cod biomass was mainly driven by fishing mortality. Together, these results give a better understanding of how multiple interacting factors have shaped cod growth throughout a century, both directly and indirectly.


Assuntos
Mudança Climática , Gadus morhua , Animais , Regiões Árticas , Ecossistema , Pesqueiros , Humanos , Dinâmica Populacional
8.
J Anim Ecol ; 88(11): 1645-1656, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31034605

RESUMO

Fishing and climate change are profoundly impacting marine biota through unnatural selection and exposure to potentially stressful environmental conditions. Their effects, however, are often considered in isolation, and then only at the population level, despite there being great potential for synergistic selection on the individual. We explored how fishing and climate variability interact to affect an important driver of fishery productivity and population dynamics: individual growth rate. We projected that average growth rate would increase as waters warm, a harvest-induced release from density dependence would promote adult growth, and that fishing would increase the sensitivity of somatic growth to temperature. We measured growth increments from the otoliths of 400 purple wrasse (Notolabrius funicola), a site-attached temperate marine reef fish inhabiting an ocean warming hotspot. These were used to generate nearly two decades of annually resolved growth estimates from three populations spanning a period before and after the onset of commercial fishing. We used hierarchical models to partition variation in growth within and between individuals and populations, and attribute it to intrinsic (age, individual-specific) and extrinsic (local and regional climate, fishing) drivers. At the population scale, we detected predictable additive increases in average growth rate associated with warming and a release from density dependence. A fishing-warming synergy only became apparent at the individual scale where harvest resulted in the 50% reduction of thermal growth reaction norm diversity. This phenotypic change was primarily caused by the loss of larger individuals that showed a strong positive response to temperature change after the onset of size-selective harvesting. We speculate that the dramatic loss of individual-level biocomplexity is caused by either inadvertent fisheries selectivity based on behaviour, or the disruption of social hierarchies resulting from the selective harvesting of large, dominant and resource-rich individuals. Whatever the cause, the removal of individuals that display a positive growth response to temperature could substantially reduce species' capacity to adapt to climate change at temperatures well below those previously thought stressful.


Assuntos
Mudança Climática , Pesqueiros , Animais , Biota , Peixes , Dinâmica Populacional , Temperatura
9.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801243

RESUMO

Aquaculture expansion is limited by the negative environmental impact of the waste and the need for alternative sources in the diet of reared fish. In this framework, for the first time, the survival rates, biomass gain, and fatty acid profiles of the polychaete Sabella spallanzanii and the macroalga Chaetomorpha linum, reared/cultivated as bioremediators in an integrated multitrophic aquaculture system (IMTA), were evaluated for their potential reuse applications. Results showed that these organisms represent a natural source of omega-3 and omega-6. On account of the overall results and the high biomass obtained as by-products, a preliminary study was performed employing both S. spallanzanii and C. linum as new dietary ingredients to feed different sized Dicentrarchus labrax. Fish survival rate, biomass growth, and specific growth rate were determined resulting in no significant differences between control and treated fishes. Histological analyses showed no alterations of the stomach tunica mucosa and submucosa in treated fishes. The eco-friendly approaches applied in the here-realized IMTA system could guarantee the achievement of sustainable by-products represented by the bioremediators S. spallanzanii and C. linum, as well as their reliability as a natural source of compounds beneficial to fish and human health.


Assuntos
Clorófitas/química , Dieta , Poliquetos/química , Animais , Aquicultura , Biomassa , Ácidos Graxos/isolamento & purificação , Ácidos Graxos Ômega-3/isolamento & purificação , Ácidos Graxos Ômega-6/isolamento & purificação , Humanos
10.
Environ Manage ; 63(6): 732-746, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30923958

RESUMO

Indices of biotic integrity (IBIs) are used to assess ecosystem health of streams and rivers. Streams and rivers with high IBI scores should support abundant and healthy populations of recreationally important sport fishes. However, the fundamental assumption that IBI scores and sport fish populations are associated needs to be examined. To verify this assumption, we tested associations between IBI scores and relative abundance of all sport fishes targeted by anglers, with emphasis on relative abundance of four size groups of smallmouth bass Micropterus dolomieu at 54 stream and river reaches in 2012 and 2013. We also tested for associations with smallmouth bass body condition and growth. A total of 13,708 fishes representing 85 species were captured including 11 sport fish species that included 571 smallmouth bass. We found that the maximum potential relative abundance of sport fishes and smallmouth bass size classes, as well as body condition of bass between 180 and 279 mm, could be predicted by IBI scores. We did not observe significant relationships with body condition of other bass size classes or with growth. Whereas abundance patterns were variable at reaches with higher IBI scores, abundance of larger, quality-sized sport fishes were more limited at reaches with IBI scores <30 that were classified as having poor biotic integrity. Maximum potential body condition was predicted to exceed 95, a condition value indicative of healthy fish, at IBI scores exceeding 50, reflective of reaches being classified as either fair, good, or excellent. These results confirm that management activities that enhance or maintain biotic integrity also support high-quality habitat for sport fish. While our findings support using IBIs as an indicator of the fishable goal specified in the United States Clean Water Act, managers should recognize that other factors not necessarily represented by the index can also limit sport fish populations.


Assuntos
Bass , Esportes , Animais , Ecossistema , Peixes , Rios , Alimentos Marinhos , Estados Unidos
11.
Ecotoxicol Environ Saf ; 148: 1090-1095, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26765670

RESUMO

The OECD TG 215 method (2000) (C.14 method of EC Regulation 440/2008) was developed on the rainbow trout (Oncorynchus mykiss) to assess chronic toxicity (28d) of chemicals on fish juveniles. It contemplates to use other well documented species identifying suitable conditions to evaluate their growth. OECD proposes the European sea bass (Dicentrarchus labrax, L. 1758) as Mediterranean species among vertebrates recommended in the OECD guidelines for the toxicity testing of chemicals. In this context, our study is aimed to proposing the adaptation of the growth test (OECD TG 215, 2000) to D. labrax. For this purpose toxicity tests were performed with sodium dodecyl sulfate, a reference toxicant commonly used in fish toxicity assays. The main aspects of the testing procedure were reviewed: fish size (weight), environmental conditions, dilution water type, experimental design, loading rate and stocking density, feeding (food type and ration), test validity criteria. The experience gained from growth tests with the sea bass allows to promote its inclusion among the species to be used for the C.14 method.


Assuntos
Bass/crescimento & desenvolvimento , Projetos de Pesquisa , Dodecilsulfato de Sódio/toxicidade , Testes de Toxicidade/métodos , Animais , Peso Corporal , Organização para a Cooperação e Desenvolvimento Econômico , Projetos de Pesquisa/legislação & jurisprudência , Projetos de Pesquisa/tendências , Especificidade da Espécie
12.
Glob Chang Biol ; 23(9): 3667-3674, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28296022

RESUMO

Ectotherms often attain smaller body sizes when they develop at higher temperatures. This phenomenon, known as the temperature-size rule, has important consequences for global fisheries, whereby ocean warming is predicted to result in smaller fish and reduced biomass. However, the generality of this phenomenon and the mechanisms that drive it in natural populations remain unresolved. In this study, we document the maximal size of 74 fish species along a steep temperature gradient in the Mediterranean Sea and find strong support for the temperature-size rule. Importantly, we additionally find that size reduction in active fish species is dramatically larger than for more sedentary species. As the temperature dependence of oxygen consumption depends on activity levels, these findings are consistent with the hypothesis that oxygen is a limiting factor shaping the temperature-size rule in fishes. These results suggest that ocean warming will result in a sharp, but uneven, reduction in fish size that will cause major shifts in size-dependent interactions. Moreover, warming will have major implications for fisheries as the main species targeted for harvesting will show the most substantial declines in biomass.


Assuntos
Mudança Climática , Peixes , Temperatura , Adaptação Fisiológica , Animais , Biomassa , Tamanho Corporal , Ecossistema , Mar Mediterrâneo
13.
Glob Chang Biol ; 22(12): 4162-4168, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27378512

RESUMO

Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod (Gadus morhua), an economically important fish species. We focus on changes in the temperature-dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985-2004 and 2081-2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature- and oxygen-dependent decline in routine aerobic scope at southern distribution limits.


Assuntos
Mudança Climática , Gadus morhua/crescimento & desenvolvimento , Temperatura , Animais , Clima
14.
Bull Math Biol ; 78(2): 280-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26817756

RESUMO

Many pelagic fish species have a life history that involves producing a large number of small eggs. This is the result of a trade-off between fecundity and larval survival probability. There are also trade-offs involving other traits, such as larval swimming speed. Swimming faster increases the average food encounter rate but also increases the metabolic cost. Here we introduce an evolutionary model comprising fecundity and swimming speed as heritable traits. We show that there can be two evolutionary stable strategies. In environments where there is little noise in the food encounter rate, the stable strategy is a low-fecundity strategy with a swimming speed that minimises the mean time taken to reach reproductive maturity. However, in noisy environments, for example where the prey distribution is patchy or the water is turbulent, strategies that optimise mean outcomes are often outperformed by strategies that increase inter-individual variance. We show that, when larval growth rates are unpredictable, a high-fecundity strategy is evolutionarily stable. In a population following this strategy, the swimming speed is higher than would be anticipated by maximising the mean growth rate.


Assuntos
Evolução Biológica , Peixes/fisiologia , Modelos Biológicos , Algoritmos , Animais , Fertilidade , Peixes/genética , Peixes/crescimento & desenvolvimento , Cadeia Alimentar , Aptidão Genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Conceitos Matemáticos , Natação
15.
Biol Lett ; 11(1): 20140746, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25631227

RESUMO

Like most benthic marine organisms, coral reef fishes produce larvae that traverse open ocean waters before settling and metamorphosing into juveniles. Where larvae are transported and how they survive is a central question in marine and fisheries ecology. While there is increasing success in modelling potential larval trajectories, our knowledge of the physical and biological processes contributing to larval survivorship during dispersal remains relatively poor. Mesoscale eddies (MEs) are ubiquitous throughout the world's oceans and their propagation is often accompanied by upwelling and increased productivity. Enhanced production suggests that eddies may serve as important habitat for the larval stages of marine organisms, yet there is a lack of empirical data on the growth rates of larvae associated with these eddies. During three cruises in the Straits of Florida, we sampled larval fishes inside and outside five cyclonic MEs. Otolith microstructure analysis revealed that four of five species of reef fish examined had consistently faster growth inside these eddies. Because increased larval growth often leads to higher survivorship, larvae that encounter MEs during transit are more likely to contribute to reef populations. Successful dispersal in oligotrophic waters may rely on larval encounter with such oceanographic features.


Assuntos
Ecossistema , Larva/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Distribuição Animal , Animais , Oceanos e Mares , Membrana dos Otólitos/crescimento & desenvolvimento , Membrana dos Otólitos/ultraestrutura
16.
Glob Chang Biol ; 20(4): 1023-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375891

RESUMO

Decreasing body size has been proposed as a universal response to increasing temperatures. The physiology behind the response is well established for ectotherms inhabiting aquatic environments: as higher temperatures decrease the aerobic capacity, individuals with smaller body sizes have a reduced risk of oxygen deprivation. However, empirical evidence of this response at the scale of communities and ecosystems is lacking for marine fish species. Here, we show that over a 40-year period six of eight commercial fish species in the North Sea examined underwent concomitant reductions in asymptotic body size with the synchronous component of the total variability coinciding with a 1-2 °C increase in water temperature. Smaller body sizes decreased the yield-per-recruit of these stocks by an average of 23%. Although it is not possible to ascribe these phenotypic changes unequivocally to temperature, four aspects support this interpretation: (i) the synchronous trend was detected across species varying in their life history and life style; (ii) the decrease coincided with the period of increasing temperature; (iii) the direction of the phenotypic change is consistent with physiological knowledge; and (iv) no cross-species synchrony was detected in other species-specific factors potentially impacting growth. Our findings support a recent model-derived prediction that fish size will shrink in response to climate-induced changes in temperature and oxygen. The smaller body sizes being projected for the future are already detectable in the North Sea.


Assuntos
Tamanho Corporal , Peixes/fisiologia , Fatores Etários , Animais , Mudança Climática , Peixes/crescimento & desenvolvimento , Modelos Biológicos , Mar do Norte , Água do Mar , Temperatura
17.
Glob Chang Biol ; 20(8): 2450-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24862838

RESUMO

Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.


Assuntos
Mudança Climática , Peixes/crescimento & desenvolvimento , Modelos Teóricos , Membrana dos Otólitos/crescimento & desenvolvimento , Animais , Temperatura , Água , Austrália Ocidental
18.
J Fish Biol ; 84(1): 231-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24383807

RESUMO

The effect of water temperature on growth responses of three common seagrass fish species that co-occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27-35°S), Centropogon australis (primarily subtropical to warm temperate: 24-37°S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32°S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22°C, low: 18°C and high: 26°C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26°C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18°C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages.


Assuntos
Mudança Climática , Ecossistema , Perciformes/crescimento & desenvolvimento , Temperatura , Animais , Austrália , Estuários
19.
Heliyon ; 10(13): e33901, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027601

RESUMO

Tamarindus indica, a beneficial herb, has many health benefits but there is limited research on its use in fish nutrition industry. The current study investigated the effects of incorporating extracts of T. indica into the canola meal-based diets of Cyprinus carpio (common carp); following which, the growth, digestibility, carcass and hematological markers were assessed. A total of six diets were formulated with varying concentrations of T. indica extracts (TIE) viz, 0 %, 0.5 %, 1 %, 1.5 %, 2 % and 2.5 %. The fish (N = 270, 15 fish/tank with triplicates) in each tank were fed experimental diets for 70 days. The study demonstrated that TIE supplementation significantly improved the growth of common carp when compared to 0 % TIE level (control). The best results were observed at 1 % TIE level for the specific growth rate (1.68 ± 0.03 %), weight gain (15.00 ± 0.57 g), and feed conversion ratio (1.36 ± 0.05). Conversely, the 2.5 % TIE level gave the least improvement in terms of growth performance. Specifically for nutrient digestibility, the maximum values of crude protein (CP, 67.60 ± 0.83 %), crude fat (CF, 67.49 ± 0.45 %) and gross energy (GE, 70.90 ± 0.56 %) were recorded at 1 % TIE level. In addition, the best results of body composition (protein: 63.92 ± 0.06 %, ash: 18.60 ± 0.03 %, fat: 7.12 ± 0.02 % and moisture: 10.36 ± 0.04 %) and hematological indices, were measured in carps fed with 1 % supplementation level. In conclusion, the overall health of C. carpio fingerlings was improved with TIE supplementation in the diet containing 1 % TIE.

20.
Chemosphere ; 359: 142231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719117

RESUMO

In this study, we investigated the growth dynamics and otolith shape asymmetry of two fish species, Chrysichthys nigrodigitatus (CN) and Oreochromis niloticus (ON), within urbanized watersheds of the southern lagoon system, Nigeria. Using the von Bertalanffy growth model (VBGM), in addition to sediment metal concentration indices such as the average shale content, index of geoaccumulation (Igeo), contamination factor (CF), pollution load index (PLI), and potential ecological risk (PER) index, contamination levels were classified, and ecological risks were assessed. Notably, a lower growth potential (t0) was observed in CN at Ikorodu than at Epe, with similar trends for ON in the Epe during the dry season. Otolith asymmetry patterns, particularly in the CN at Ikorodu and ON in the Epe during the dry season, exhibited distinct ecological variations, indicating heightened stress levels at Ikorodu. Sediment analyses revealed moderate to strong contamination (Cd, Pb, Ni, and Cr) in both Lagos Lagoon (Ikorodu) and Epe Lagoon, with Ikorodu exhibiting notably high to moderate contamination levels according to the CF index. Elevated PLI values for Cd and Pb in Ikorodu, in addition to greater PER, indicated increased risk, with Cd posing a high risk (61.42%) and Pb posing a moderate risk (49.50%). Additionally, the reduced asymptotic length in the Epe during the dry season suggests that Chrysichthys nigrodigitatus is adaptable to seasonal variations, while divergent growth patterns in both areas indicate the existence of trade-off mechanisms in response to changing conditions. Habitat-specific otolith asymmetry and metal contamination underscore species adaptability, with wider stressor variability in Lagos than in Epe. Furthermore, multidimensional scaling analysis highlights the intricate relationship between otolith shape variables and environmental factors, emphasizing the need for tailored conservation efforts in urbanized watersheds.


Assuntos
Ciclídeos , Monitoramento Ambiental , Membrana dos Otólitos , Urbanização , Poluentes Químicos da Água , Animais , Ciclídeos/crescimento & desenvolvimento , Nigéria , Membrana dos Otólitos/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA