Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(25): 7692-7707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35369810

RESUMO

Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.


Assuntos
Anti-Infecciosos , Alimentos , Bactérias , Esporos Bacterianos , Biofilmes
2.
Crit Rev Food Sci Nutr ; 61(4): 666-689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32208859

RESUMO

Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.


Assuntos
Anti-Infecciosos , Gases em Plasma , Manipulação de Alimentos , Qualidade dos Alimentos , Inocuidade dos Alimentos
3.
J Appl Microbiol ; 116(5): 1067-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24506803

RESUMO

Ultrasound requires high power and longer treatment times to inactivate micro-organisms when compared to ultrasound combined with other technologies. Previous reports have shown that the effectiveness of ultrasound as a decontamination technology can be increased by combining it with another treatment such as pressure, heat and antimicrobial solutions. Assisted ultrasound, the combination of ultrasound with another technology, is more energy efficient, and it has less impact on the food properties. In this review paper, the power ultrasound antimicrobial mechanisms of action, the antimicrobial effects of ultrasound in combination with other physical processes and antimicrobial solutions are comprehensively discussed. Furthermore, the present interest on using these technologies as alternative processing and decontamination methods is presented. Research outputs on the application of ultrasound combined with physical processes are showcased including applications of thermosonication, manosonication, manothermosonication and osmosonication. Antimicrobial efficacy, energy requirements and optimal operation conditions of the different assisted ultrasound technologies are critically discussed, and their impact on the food industry for future applications is presented. Overall, this review paper highlights the importance and recent developments of assisted ultrasound for enhancing food safety.


Assuntos
Descontaminação/métodos , Microbiologia de Alimentos/métodos , Ultrassom , Temperatura Alta , Pressão
4.
Foods ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338588

RESUMO

The development of novel antimicrobial technologies for the food industry represents an important strategy to improve food safety. Antimicrobial photodynamic disinfection (aPDD) is a method that can inactivate microbes without the use of harsh chemicals. aPDD involves the administration of a non-toxic, light-sensitive substance, known as a photosensitizer, followed by exposure to visible light at a specific wavelength. The objective of this study was to screen the antimicrobial photodynamic efficacy of 32 food-safe pigments tested as candidate photosensitizers (PSs) against pathogenic and food-spoilage bacterial suspensions as well as biofilms grown on relevant food contact surfaces. This screening evaluated the minimum bactericidal concentration (MBC), minimum biofilm eradication concentration (MBEC), and colony forming unit (CFU) reduction against Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas fragi, and Brochothrix thermosphacta. Based on multiple characteristics, including solubility and the ability to reduce the biofilms by at least 3 log10 CFU/sample, 4 out of the 32 PSs were selected for further optimization against S. enterica and MRSA, including sunset yellow, curcumin, riboflavin-5'-phosphate (R-5-P), and erythrosin B. Optimized factors included the PS concentration, irradiance, and time of light exposure. Finally, 0.1% w/v R-5-P, irradiated with a 445 nm LED at 55.5 J/cm2, yielded a "max kill" (upwards of 3 to 7 log10 CFU/sample) against S. enterica and MRSA biofilms grown on metallic food contact surfaces, proving its potential for industrial applications. Overall, the aPDD method shows substantial promise as an alternative to existing disinfection technologies used in the food processing industry.

5.
Sci Total Environ ; 874: 162235, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36791866

RESUMO

The presence of chemical contaminants in foods and agricultural products is one of the major safety issues worldwide, posing a serious concern to human health. Nonthermal plasma (NTP) containing richly reactive oxygen and nitrogen species (RONS) has been trialed as a potential decontamination method. Yet, this technology comes with multiple downsides, including adverse effects on the quality of treated foods and limited exposure to entire surfaces on samples with hard-to-reach spots, further hindering real-life applications. Therefore, plasma-activated water (PAW) has been recently developed to facilitate the interactions between RONS and contaminant molecules in the liquid phase, allowing a whole surface treatment with efficient chemical degradation. Here, we review the recent advances in PAW utilized as a chemical decontamination agent in foods. The reaction mechanisms and the main RONS contributors involved in the PAW-assisted removal of chemical contaminants are briefly outlined. Also, the comprehensive effects of these treatments on food qualities (chemical and physical characteristics) and toxicological evaluation of PAW (in vitro and in vivo) are thoroughly discussed. Ultimately, we identified some current challenges and provided relevant suggestions, which can further promote PAW research for real-life applications in the future.


Assuntos
Gases em Plasma , Água , Humanos , Água/química , Descontaminação/métodos , Microbiologia de Alimentos , Alimentos , Espécies Reativas de Oxigênio , Gases em Plasma/química
6.
Nutrients ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364914

RESUMO

Atmospheric cold plasma (ACP) is a non-thermal technology whose ability to inactivate pathogenic microorganisms gives it great potential for use in the food industry as an alternative to traditional thermal methods. Multiple investigations have been reviewed in which the cold plasma is generated through a dielectric barrier discharge (DBD) type reactor, using the atmosphere of the food packaging as the working gas. The results are grouped into meats, fruits and vegetables, dairy and lastly cereals. Microbial decontamination is due to the action of the reactive species generated, which diffuse into the treated food. In some cases, the treatment has a negative impact on the quality. Before industrializing its use, alterations in colour, flavour and lipid oxidation, among others, must be reduced. Furthermore, scaling discharges up to larger regions without compromising the plasma homogeneity is still a significant difficulty. The combination of DBD with other non-thermal technologies (ultrasound, chemical compounds, magnetic field) improved both the safety and the quality of food products. DBD efficacy depends on both technological parameters (input power, gas composition and treatment time) and food intrinsic properties (surface roughness, moisture content and chemistry).


Assuntos
Gases em Plasma , Gases em Plasma/química , Embalagem de Alimentos/métodos , Carne , Grão Comestível
7.
Virol Sin ; 37(6): 823-830, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309306

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from cold-chain foods to frontline workers poses a serious public health threat during the current global pandemic. There is an urgent need to design concise approaches for effective virus inactivation under different physicochemical conditions to reduce the risk of contagion through viral contaminated surfaces of cold-chain foods. By employing a time course of electron beam exposure to a high titer of SARS-CoV-2 at cold-chain temperatures, a radiation dose of 2 â€‹kGy was demonstrated to reduce the viral titer from 104.5 to 0 median tissue culture infectious dose (TCID50)/mL. Next, using human coronavirus OC43 (HCoV-OC43) as a suitable SARS-CoV-2 surrogate, 3 â€‹kGy of high-energy electron radiation was defined as the inactivation dose for a titer reduction of more than 4 log units on tested packaging materials. Furthermore, quantitative reverse transcription PCR (RT-qPCR) was used to test three viral genes, namely, E, N, and ORF1ab. There was a strong correlation between TCID50 and RT-qPCR for SARS-CoV-2 detection. However, RT-qPCR could not differentiate between the infectivity of the radiation-inactivated and nonirradiated control viruses. As the defined radiation dose for effective viral inactivation fell far below the upper safe dose limit for food processing, our results provide a basis for designing radiation-based approaches for the decontamination of SARS-CoV-2 in frozen food products. We further demonstrate that cell-based virus assays are essential to evaluate the SARS-CoV-2 inactivation efficiency for the decontaminating strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Embalagem de Alimentos , Alimentos Congelados , Elétrons , Doses de Radiação
8.
Int J Biol Macromol ; 193(Pt B): 1986-1995, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767881

RESUMO

Hydrophobic cellulose laurate (CL) with high degree of substitution has been successfully synthesized. The mechanical property, water-resistance, antimicrobial activity, barrier properties and food decontamination of cellulose-laurate-curcumin films (CL-Cux, x = 0.1, 0.5, and 1) were investigated. The results showed that the mechanical properties of CL-Cux hardly change after soaking in water for 24 h, probably due to the strong hydrophobicity of cellulose laurate. CL-Cu1 represented a good photoinduced antibacterial effect against S. aureus. After irradiation of white light at 60 mW·cm-2 for 20 min, the inhibition efficiency reached to 95 ± 2.02%, probably owing to the generated active 1O2. In comparison with CL-Cu1 stored in natural light, the bacteriostatic effect of CL-Cu1 in dark storage was better, and the inhibition rate of CL-Cu1 remained 80 ± 1.22 at 60th day. The stabler excited state of curcumin in hydrophobic cellulose laurate was probably assigned to inhibition of tautomerism or conformational transition, which was beneficial to the generation of singlet oxygen. CL-Cu1 can significantly inhibit the growth of TVBN and TVC values of chilled meat upon white light irradiation, indicating the potential application of cellulose-laurate-curcumin films in food decontamination.


Assuntos
Antibacterianos/farmacologia , Celulose/farmacologia , Curcumina/farmacologia , Conservação de Alimentos/métodos , Lauratos/farmacologia , Carne/microbiologia , Embalagem de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA