Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(14): 7123-7128, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872479

RESUMO

The long-chain fatty acid receptor FFAR1/GPR40 binds agonists in both an interhelical site between the extracellular segments of transmembrane helix (TM)-III and TM-IV and a lipid-exposed groove between the intracellular segments of these helices. Molecular dynamics simulations of FFAR1 with agonist removed demonstrated a major rearrangement of the polar and charged anchor point residues for the carboxylic acid moiety of the agonist in the interhelical site, which was associated with closure of a neighboring, solvent-exposed pocket between the extracellular poles of TM-I, TM-II, and TM-VII. A synthetic compound designed to bind in this pocket, and thereby prevent its closure, was identified through structure-based virtual screening and shown to function both as an agonist and as an allosteric modulator of receptor activation. This discovery of an allosteric agonist for a previously unexploited, dynamic pocket in FFAR1 demonstrates both the power of including molecular dynamics in the drug discovery process and that this specific, clinically proven, but difficult, antidiabetes target can be addressed by chemotypes different from existing ligands.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Sítio Alostérico , Benzofuranos/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Sulfonas/antagonistas & inibidores
2.
J Enzyme Inhib Med Chem ; 36(1): 1651-1658, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34294008

RESUMO

A set of 1,3,4-thiadiazole-2-carboxamides bearing a substituted biphenyl in the amide portion was synthesised and tested for agonistic activity towards free fatty acid receptor 1 (FFA1). The observed activity trends were impossible to rationalised based solely on the docking energy scores of Glide SP. On the contrary, when the phospholipid cell membrane bilayer was reconstructed around FFA1, it became apparent that inactive compounds displayed significant strained contacts with the membrane while for active compounds the strain was noticeably lower. These findings justify using the improved docking protocol for modelling GPCR-ligand interactions which uses the crystal structure of the receptor and a reconstructed portion of a cell membrane.


Assuntos
Hidrazinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
3.
Inflammopharmacology ; 29(6): 1625-1639, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34669065

RESUMO

Free fatty acid receptor 1 (FFAR1) is a G-protein coupled receptor with prominent expression on pancreatic beta cells, bones, intestinal cells as well as the nerve cells. This receptor mediates a multitude of functions in the body including release of incretins, secretion of insulin as well as sensation of pain. Since FFAR1 causes secretion of insulin and regulates glucose metabolism, efforts were made to unfold its structure followed by discovering agonists for the receptor and the utilization of these agonists in the therapy of type 2 diabetes mellitus. Development of such functional FFAR1 agonists is a necessity because the currently available therapy for type 2 diabetes mellitus has numerous drawbacks, of which, the major one is hypoglycemia. Since the most prominent effect of the FFAR1 agonists is on glucose concentration in the body, so the major research is focused on treating type 2 diabetes mellitus, though the agonists could benefit other metabolic disorders and neurological disorders as well. The agonists developed so far had one major limitation, i.e., hepatotoxicity. Although, the only agonist that could reach phase 3 clinical trials was TAK-875 developed by Takeda Pharmaceuticals but it was also withdrawn due to toxic effects on the liver. Thus, there are numerous agonists for the varied binding sites of the receptor but no drug available yet. There does seem to be a ray of hope in the drugs that target FFAR1 but a lot more efforts towards drug discovery would result in the successful management of type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Sítios de Ligação , Diabetes Mellitus Tipo 2/fisiopatologia , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Respir Res ; 21(1): 317, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256729

RESUMO

BACKGROUND: Activation of free fatty acid receptors (FFAR1 and FFAR4) which are G protein-coupled receptors (GPCRs) with established (patho)physiological roles in a variety of obesity-related disorders, induce human airway smooth muscle (HASM) cell proliferation and shortening. We reported amplified agonist-induced cell shortening in HASM cells obtained from obese lung donors. We hypothesized that FFAR1 modulate excitation-contraction (EC) coupling in HASM cells and play a role in obesity-associated airway hyperresponsiveness. METHODS: In HASM cells pre-treated (30 min) with FFAR1 agonists TAK875 and GW9508, we measured histamine-induced Ca2+ mobilization, myosin light chain (MLC) phosphorylation, and cortical tension development with magnetic twisting cytometry (MTC). Phosphorylation of MLC phosphatase and Akt also were determined in the presence of the FFAR1 agonists or vehicle. In addition, the effects of TAK875 on MLC phosphorylation were measured in HASM cells desensitized to ß2AR agonists by overnight salmeterol treatment. The inhibitory effect of TAK875 on MLC phosphorylation was compared between HASM cells from age and sex-matched non-obese and obese human lung donors. The mean measurements were compared using One-Way ANOVA with Dunnett's test for multiple group comparisons or Student's t-test two-group comparison. For cortical tension measurements by magnetic twisted cytometry, mixed effect model using SAS V.9.2 was applied. Means were considered significant when p ≤ 0.05. RESULTS: Unexpectedly, we found that TAK875, a synthetic FFAR1 agonist, attenuated histamine-induced MLC phosphorylation and cortical tension development in HASM cells. These physiological outcomes were unassociated with changes in histamine-evoked Ca2+ flux, protein kinase B (AKT) activation, or MLC phosphatase inhibition. Of note, TAK875-mediated inhibition of MLC phosphorylation was maintained in ß2AR-desensitized HASM cells and across obese and non-obese donor-derived HASM cells. CONCLUSIONS: Taken together, our findings identified the FFAR1 agonist TAK875 as a novel bronchoprotective agent that warrants further investigation to treat difficult-to-control asthma and/or airway hyperreactivity in obesity.


Assuntos
Benzofuranos/farmacologia , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/farmacologia , Histamina/farmacologia , Pulmão/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Células Cultivadas , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Metilaminas/farmacologia , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosforilação , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
Bioorg Chem ; 99: 103830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32289588

RESUMO

Six derivatives of 3-phenylpropionic acid bearing various natural and natural-like, spatially defined peripheral motifs have been synthesized and evaluated in vitro for free fatty acid receptor 1 (FFA1) activation. Two frontrunner compounds (bearing a bornyl and cytosine groups) were evaluated in an oral glucose tolerance test in mice where both demonstrated the ability to sustain blood glucose levels following a glucose challenge. The bornyl compound displayed a somewhat superior, dose-dependent efficacy and, therefore, can be regarded as a lead compounds for further development as a therapeutic agent for type 2 diabetes mellitus. Its high affinity to FFA1 was rationalized by docking experiments.


Assuntos
Produtos Biológicos/farmacologia , Desenho de Fármacos , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Glicemia/análise , Relação Dose-Resposta a Droga , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fenilpropionatos/síntese química , Fenilpropionatos/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
6.
J Biochem Mol Toxicol ; 33(8): e22345, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31066974

RESUMO

For fasiglifam (TAK875) and its metabolites the substance-specific mechanisms of liver toxicity were studied. Metabolism studies were run to identify a putatively reactive acyl glucuronide metabolite. In vitro cytotoxicity and caspase 3/7 activation were assessed in primary human and dog hepatocytes in 2D and 3D cell culture. Involvement of glutathione (GSH) detoxication system in mediating cytotoxicity was determined by assessing potentiation of cytotoxicity in a GSH depleted in vitro system. In addition, potential mitochondrial liabilities of the compounds were assessed in a whole-cell mitochondrial functional assay. Fasiglifam showed moderate cytotoxicity in human primary hepatocytes in the classical 2D cytotoxicity assays and also in the complex 3D human liver microtissue (hLiMT) after short-term treatment (24 hours or 48 hours) with TC50 values of 56 to 68 µM (adenosine triphosphate endpoint). The long-term treatment for 14 days in the hLiMT resulted in a slight TC50 shift over time of 2.7/3.6 fold lower vs 24-hour treatment indicating possibly a higher risk for cytotoxicity during long-term treatment. Cellular GSH depletion and impairment of mitochondrial function by TAK875 and its metabolites evaluated by Seahorse assay could not be found being involved in DILI reported for TAK875. The acyl glucuronide metabolites of TAK875 have been finally identified to be the dominant reason for liver toxicity.


Assuntos
Benzofuranos/toxicidade , Ácidos Graxos não Esterificados/metabolismo , Fígado/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/toxicidade , Animais , Benzofuranos/metabolismo , Células Cultivadas , Cães , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/metabolismo
7.
Endocr J ; 66(1): 43-50, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30333365

RESUMO

It is known that long-chain fatty acids bind to free fatty acid receptor 1 (Ffar1), also known as G protein-coupled receptor 40 (GPR40), and amplify glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells and that Ffar1 agonists facilitates insulin secretion and ameliorates glycemic control. On the other hands, pancreatic and duodenal homeobox factor 1 (Pdx1) is an important transcription factor for various ß-cell-related genes including insulin gene and thereby contributes to the maintenance of mature ß-cell function. The aim of this study was to evaluate how Ffar1 expression in ß-cells is altered under diabetic conditions. In this study, we used male obese type 2 diabetic mice and control mice. We evaluated Ffar1 and Pdx1 mRNA and protein expression levels in both mice. In addition, we examined whether Pdx1 is a possible regulator of Ffar1 expression using small interfering RNA for Pdx1 (siPdx1) in ß-cell-derived cell line. As the results, Ffar1 mRNA and protein expression in ß-cells were significantly lower in obese type 2 diabetic db/db mice compared to control mice which was accompanied by the decreased expression of Pdx1. In addition, down-regulation of Pdx1 expression using siPdx1 suppressed Ffar1 expression. Furthermore, adenoviral Pdx1 overexpression significantly increased Ffar1 expression. In conclusion, Ffar1 expression is markedly down-regulated under diabetic conditions which is accompanied by decreased expression of Pdx1. Furthermore, it is likely that Pdx1 is a regulator of Ffar1 expression in ß-cells.


Assuntos
Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodomínio/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Obesidade/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Transativadores/genética , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/metabolismo , Transativadores/metabolismo
8.
Bioorg Med Chem Lett ; 27(5): 1278-1283, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148462

RESUMO

The long chain free fatty acid receptor 4 (FFA4/GPR120) has recently been recognized as lipid sensor playing important roles in nutrient sensing and inflammation and thus holds potential as a therapeutic target for type 2 diabetes and metabolic syndrome. To explore the effects of stimulating this receptor in animal models of metabolic disease, we initiated work to identify agonists with appropriate pharmacokinetic properties to support progression into in vivo studies. Extensive SAR studies of a series of phenylpropanoic acids led to the identification of compound 29, a FFA4 agonist which lowers plasma glucose in two preclinical models of type 2 diabetes.


Assuntos
Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Fenilpropionatos/química , Fenilpropionatos/farmacocinética , Fenilpropionatos/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
9.
Biol Pharm Bull ; 40(8): 1255-1259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769007

RESUMO

The free fatty acid receptor 1 (GPR40/FFAR1) is activated by polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acids (DHA). This receptor has been the focus of many studies regarding physiological functions of the central nervous system. PUFAs are essential for neuronal development and maintenance of neuronal function; thus, the decrease of PUFAs in the brain is closely related to the induction of psychiatric diseases associated with emotional disorder, such as anxiety, depression, and schizophrenia. However, details of the mechanisms remain unclear. In this study, we investigated changes of maternal and/or emotional behavior caused by a deficiency of GPR40/FFAR1 signaling. GPR40/FFAR1 deficient (FFAR1-/-) female mice exhibited impaired maternal care such as retrieving behaviors and an increased rate of neglect and infanticide when compared to wild type (WT) female mice. Furthermore, FFAR1-/- female mice showed increased time spent in the open arms in an elevated plus maze test, reduction of locomotor activity and social interaction behavior, and decreased sucrose intake, when compared to WT female mice. In conclusion, these findings suggest that PUFAs-GPR40/FFAR1 signaling might function, at least in part, as a regulatory factor of emotional and maternal behavior in mice.


Assuntos
Comportamento Animal , Emoções , Comportamento Materno , Receptores Acoplados a Proteínas G/genética , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Comportamento Social
10.
Handb Exp Pharmacol ; 236: 1-16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27757762

RESUMO

FFA1 is a G protein-coupled receptor activated by medium- to long-chain fatty acids. FFA1 plays important roles in various physiological processes such as insulin secretion and energy metabolism. FFA1 expressed on pancreatic ß-cells and intestine contributes to insulin and incretin secretion, respectively. These physiological functions of FFA1 are interesting as an attractive drug target for type II diabetes and metabolic disorders. A number of synthetic FFA1 ligands have been developed and they have contributed to our current understanding of the physiological and pathophysiological functions of FFA1 both in in vitro and in vivo studies. In addition, these synthetic ligands also provided information on the structure-activity relationships of FFA1 ligands. Further, FFA1 protein crystallized with one of the high affinity agonist leads provided useful insights for the development of more effective ligands. Among FFA1 ligands, several compounds have been further investigated in the clinical trials. Thus, FFA1 ligands have great potential as drug candidates. In this section, recent progress about FFA1 ligands and the possibility of their clinical use are described.


Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Benzofuranos/química , Ensaios Clínicos como Assunto , Humanos , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Relação Estrutura-Atividade , Sulfonas/química
11.
J Enzyme Inhib Med Chem ; 32(1): 29-36, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27781494

RESUMO

A series of nine compounds based on 3-[4-(benzyloxy)phenyl]propanoic acid core containing a 1-oxa-9-azaspiro[5.5]undecane periphery was designed, synthesized and evaluated as free fatty acid 1 (FFA1 or GPR40) agonists. The spirocyclic appendages included in these compounds were inspired by LY2881835, Eli Lilly's advanced drug candidate for type II diabetes mellitus that was in phase I clinical trials. These polar spirocyclic, fully saturated appendages (that are themselves uncharacteristic of the known FFA1 ligand space) were further decorated with diverse polar groups (such as basic heterocycles or secondary amides). To our surprise, while seven of nine compounds were found to be inactive (likely due to the decrease in lipophilicity, which is known to be detrimental to FFA1 ligand affinity), two compounds containing 2-pyridyloxy and 2-pyrimidinyloxy groups were found to have EC50 of 1.621 and 0.904 µM, respectively. This result is significant in the context of the worldwide quest for more polar FFA1 agonists, which would be devoid of liver toxicity effects earlier observed for a FFA1 agonist fasiglifam (TAk-875) in clinical studies.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Análise Espectral
12.
Bioorg Med Chem ; 24(13): 2954-2963, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229618

RESUMO

Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, LogD, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.


Assuntos
Amidas/farmacologia , Sistemas de Liberação de Medicamentos , Microssomos Hepáticos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Amidas/química , Animais , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Microssomos Hepáticos/química , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Tiadiazóis/química
13.
Bioorg Med Chem ; 24(21): 5481-5494, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647366

RESUMO

The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly's drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50=55nM) was reached. Four lead compounds (EC50 range 55-410nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F=10.3%) and plasma levels achieved on oral administration.


Assuntos
Piperidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Compostos de Espiro/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
14.
J Enzyme Inhib Med Chem ; 31(6): 1404-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26899762

RESUMO

1,3,4-Thiadiazole was explored as a more polar, heterocyclic replacement for the phenyl ring in the 3-arylpropionic acid pharmacophore present in the majority of GPR40 agonists. Out of 13 compounds synthesized using a flexible, three-step protocol (involving no chromatographic purification), four compounds were confirmed to activate the target in micromolar concentration range. While the potency of the series should be subject of further optimization, the remarkable aqueous solubility and microsomal stability observed for the lead compound (8g) apparently attests to this new scaffold's high promise in the GPR40 agonist field.


Assuntos
Propionatos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiadiazóis/química , Humanos , Propionatos/química , Análise Espectral/métodos
15.
Eur J Med Chem ; 264: 115990, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039791

RESUMO

Free fatty acid receptor 1 (FFAR1 or GPR40) is a potential target for treating type 2 diabetes mellitus (T2DM) and related disorders that have been extensively researched for many years. GPR40/FFAR1 is a promising anti-diabetic target because it can activate insulin, promoting glucose metabolism. It controls T2DM by regulating glucose levels in the body through two separate mechanisms: glucose-stimulated insulin secretion and incretin production. In the last few years, various synthetic GPR40/FFAR1 agonists have been discovered that fall under several chemical classes, viz. phenylpropionic acid, phenoxyacetic acid, and dihydrobenzofuran acetic acid. However, only a few synthetic agonists have entered clinical trials due to various shortcomings like poor efficacy, low lipophilicity and toxicity issues. As a result, pharmaceutical firms and research institutions are interested in developing synthetic GPR40/FFAR1 agonists with superior effectiveness, lipophilicity, and safety profiles. This review encompasses the most recent research on synthetic GPR40/FFAR1 agonists, including their chemical classes, design strategies and structure-activity relationships. Additionally, we have emphasised the structural characteristics of the most potent GPR40/FFAR1 agonists from each chemical class of synthetic derivatives and analysed their chemico-biological interactions. This work will hopefully pave the way for developing more potent and selective synthetic GPR40/FFAR1 agonists for treating T2DM and related disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Glucose , Relação Estrutura-Atividade
16.
Expert Opin Ther Pat ; 33(9): 565-577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947382

RESUMO

INTRODUCTION: Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for type 2 diabetes mellitus (T2DM) because it could clinically stimulate insulin release in a glucose-dependent manner without inducing hypoglycemia. In both the pharmaceutical industry and academic community, FFAR1 agonists have attracted considerable attention. AREAS COVERED: The review presents a patent overview of FFAR1 modulators in 2020-2023, along with chemical structures, the biological activities and therapeutic applications of the representative compounds. Our patent survey used the major electronic databases, namely SciFinder, and Web of Science and Innojoy. EXPERT OPINION: Although FFAR1 agonists exhibit outstanding advantages, they are also associated with significant challenges. At present, reducing the molecular weight and overall lipophilicity and developing tissue-specific FFAR1 agonists may be the strategies for alleviating hepatotoxicity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Secreção de Insulina , Patentes como Assunto , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
Front Pharmacol ; 14: 1136778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998612

RESUMO

Objective: Yiqi Huazhuo Decoction (YD) reduces blood glucose, glycated hemoglobin, body weight, and insulin resistance in patients with type 2 diabetes mellitus (T2DM), but its exact mechanisms are unknown. This study investigated the therapeutic effects and mechanisms of YD on impaired insulin secretion in T2DM rats. Methods: T2DM rats were randomized to the model, YD-lo (15 mg/kg/d YD, 10 weeks), YD-hi (30 mg/kg/d YD, 10 weeks), positive drug (TAK-875), and healthy control groups. The rats underwent an oral glucose tolerance test (OGTT), glucose-stimulated insulin secretion (GSIS) test, and serum lipid measurements. High-fat and high-glucose-injured RIN-m5f cells were treated with YD (30 or 150 mg/mL) for 48 h. GPR40 and IP3R-1 expression levels were determined by immunofluorescence, qRT-PCR, and western blot. Results: Compared with the model group, the OGTT area under the curve (AUC) in the YD-hi group was decreased by 26.7%, the insulin release test (IRT) AUC in the YD-hi group was increased by 45.9%, and the GSIS AUC was increased by 33.9% (p < 0.05). Compared with the model cells, the insulin secretion after glucose stimulation in the YD-hi group was increased by 24.5%, similar to the TAK-875 group (23.1%) (p > 0.05). GPR40 and IP3R-1 mRNA in the model cells were decreased by 49.5% and 51.2% compared with the control cells (p < 0.05). In the YD-hi group, GPR40 and IP3R-1 mRNA levels were increased by 58.1% and 39.3% (p < 0.05), similar to the TAK-875 group. The changes in protein expression were similar to mRNA. Conclusion: YD promotes insulin secretion from pancreatic islet ß-cell in T2DM rats by regulating the GPR40-IP3R-1 pathway, thereby reducing blood glucose.

18.
Mol Cell Endocrinol ; 545: 111573, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065200

RESUMO

Free fatty acid receptor 1 phosphorylation sites were studied using mutants, including a) a mutant with T215V in the third intracellular loop (3IL), b) another with changes in the carboxyl terminus (C-term): T287V, T293V, S298A, and c) a mutant with all of these changes (3IL/C-term). Agonist-induced increases in intracellular calcium were similar between cells expressing wild-type or mutant receptors. In contrast, agonist-induced FFA1 receptor phosphorylation was reduced in mutants compared to wild type. Phorbol ester-induced FFA1 receptor phosphorylation was rapid and robust in cells expressing the wild-type receptor and essentially abolished in the mutants. Agonist-induced ERK 1/2 phosphorylation and receptor internalization were decreased in cells expressing the mutant receptors compared to those expressing the wild-type receptor. Our data suggest that the identified sites might participate in receptor phosphorylation, signaling, and internalization.


Assuntos
Ácidos Graxos não Esterificados , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Mutação/genética , Fosforilação , Transdução de Sinais
19.
Pharmaceutics ; 14(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35213965

RESUMO

Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic ß-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to construct models to identify possible FFA1 agonists by applying four different machine-learning algorithms. The best model (M2) meets the Tropsha's test requirements and has the statistics parameters R2 = 0.843, Q2CV = 0.785, and Q2ext = 0.855. Also, coverage of 100% of the test set based on the applicability domain analysis was obtained. Furthermore, a deep analysis based on the ADME predictions, molecular docking, and molecular dynamics simulations was performed. The lipophilicity and the residue interactions were used as relevant criteria for selecting a candidate from the screening of the DiaNat and DrugBank databases. Finally, the FDA-approved drugs bilastine, bromfenac, and fenofibric acid are suggested as potential and lead FFA1 agonists.

20.
Eur J Pharmacol ; 905: 174183, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015318

RESUMO

This study aimed to investigate whether methyl palmitate (MP) exerts cardioprotective effect against the ischemia/reperfusion (I/R) injury and its mechanisms underlying. The cultured adult cardiomyocytes were treated with vehicle or lactic acid ischemic buffer (pH 6.8) during hypoxia/reoxygenation. In addition, the cardioprotective effect of MP was evaluated using the ex vivo heart model of I/R injury. Here, we found that MP significantly reduced the I/R-induced cardiomyocyte death. Treatment with GW1100 (a GPR40-antagonist) or wortmannin (a phosphatidylinositol 3-kinase, PI3K, specific inhibitor) significantly attenuated the level of phospho-AKT (p-AKT) and abolished the MP-induced cardioprotection against the I/R-induced injury. Using the ex vivo I/R model, we also demonstrated that pretreatment with MP significantly reduced the size of myocardial infarction and the levels of cleaved-caspase 3 and MDA, and increased the protein levels of GPR40 and p-AKT induced by I/R. The cardioprotective effect of MP was evaluated also using the in vivo heart model of I/R injury. We demonstrated that post-ischemic treatment with MP significantly attenuated the size of myocardial infarction and the serum level of CK-MB induced by in vivo I/R model. Taken together, our data suggest that MP could provide significant cardioprotection against the I/R injury, and the underlying mechanisms by which MP prevented the cardiomyocyte death might be mediated through the GPR40-activated PI3K/AKT signaling pathways. These findings suggest the potential applications of MP in the treatment of I/R-induced heart injury.


Assuntos
Cardiotônicos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Palmitatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Creatina Quinase Forma MB/sangue , Masculino , Modelos Biológicos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Palmitatos/uso terapêutico , Cultura Primária de Células , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA