Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2322330121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008665

RESUMO

Ice is emerging as a promising sacrificial material in the rapidly expanding area of advanced manufacturing for creating precise 3D internal geometries. Freeform 3D printing of ice (3D-ICE) can produce microscale ice structures with smooth walls, hierarchical transitions, and curved and overhang features. However, controlling 3D-ICE is challenging due to an incomplete understanding of its complex physics involving heat transfer, fluid dynamics, and phase changes. This work aims to advance our understanding of 3D-ICE physics by combining numerical modeling and experimentation. We developed a 2D thermo-fluidic model to analyze the transition from layered to continuous printing and a 3D thermo-fluidic model for the oblique deposition, which enables curved and overhang geometries. Experiments are conducted and compared with model simulations. We found that high droplet deposition rates enable the continuous deposition mode with a sustained liquid cap on top of the ice, facilitating smooth geometries. The diameter of ice structures is controlled by the droplet deposition frequency. Oblique deposition causes unidirectional spillover of the liquid cap and asymmetric heat transfer at the freeze front, rotating the freeze front. These results provide valuable insights for reproducible 3D-ICE printing that could be applied across various fields, including tissue engineering, microfluidics, and soft robotics.

2.
J Tissue Eng ; 12: 20417314211057236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868539

RESUMO

In recent years, freeform three-dimensional (3D) printing has led to significant advances in the fabrication of artificial tissues with vascularized structures. This technique utilizes a supporting matrix that holds the extruded printing ink and ensures shape maintenance of the printed 3D constructs within the prescribed spatial precision. Since the printing nozzle can be translated omnidirectionally within the supporting matrix, freeform 3D printing is potentially applicable for the fabrication of complex 3D objects, incorporating curved, and irregular shaped vascular networks. To optimize freeform 3D printing quality and performance, the rheological properties of the printing ink and supporting matrix, and the material matching between them are of paramount importance. In this review, we shall compare conventional 3D printing and freeform 3D printing technologies for the fabrication of vascular constructs, and critically discuss their working principles and their advantages and disadvantages. We also provide the detailed material information of emerging printing inks and supporting matrices in recent freeform 3D printing studies. The accompanying challenges are further discussed, aiming to guide freeform 3D printing by the effective design and selection of the most appropriate materials/processes for the development of full-scale functional vascularized artificial tissues.

3.
Carbohydr Polym ; 272: 118469, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420728

RESUMO

The selection of sacrificial support materials is important in the fabrication of complex freeform structures. In this study, a dual droplet-based, freeform 3D printing method for pseudoplastic alginate biomaterial inks was developed using Bingham plastic cellulose nanocrystals (CNCs) as support nanomaterials. CNCs-CaCl2 mixture compositions and alginate concentrations were varied to enhance printability with rheological properties of shape fidelity and structural stability. The mixtures supported the shape of alginate and allowed CaCl2 diffusion-based cross-linking during 3D printing. The hydrogels showed rheological and physicochemical properties similar to those of pure alginate hydrogel, as CNCs were removed during post-printing processing. BSA-loaded multi-layered spheres, freeform 3D-printed for oral protein drug delivery, protected BSA in the gastric environment and provided controlled and sustained release of BSA into the intestinal environment as layer width and alginate concentration increased. This method can facilitate freeform 3D printing of diverse pseudoplastic biomaterial inks for biomedical applications.


Assuntos
Celulose , Alginatos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual
4.
Biomed Eng Lett ; 10(4): 453-479, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33194241

RESUMO

In the last decade, an emerging three-dimensional (3D) printing technique named freeform 3D printing has revolutionized the biomedical engineering field by allowing soft matters with or without cells to be printed and solidified with high precision regardless of their poor self-supportability. The key to this freeform 3D printing technology is the supporting matrices that hold the printed soft ink materials during omnidirectional writing and solidification. This approach not only overcomes structural design restrictions of conventional layer-by-layer printing but also helps to realize 3D printing of low-viscosity or slow-curing materials. This article focuses on the recent developments in freeform 3D printing of soft matters such as hydrogels, cells, and silicone elastomers, for biomedical engineering. Herein, we classify the reported freeform 3D printing systems into positive, negative, and functional based on the fabrication process, and discuss the rheological requirements of the supporting matrix in accordance with the rheological behavior of counterpart inks, aiming to guide development and evaluation of new freeform printing systems. We also provide a brief overview of various material systems used as supporting matrices for freeform 3D printing systems and explore the potential applications of freeform 3D printing systems in different areas of biomedical engineering.

5.
Biomed Eng Lett ; 10(4): 517-532, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33194245

RESUMO

Additive manufacturing (AM) of biomaterials has evolved from a rapid prototyping tool into a viable approach for the manufacturing of patient-specific implants over the past decade. It can tailor to the unique physiological and anatomical criteria of the patient's organs or bones through precise controlling of the structure during the 3D printing. Silicone elastomers, which is a major group of materials in many biomedical implants, have low viscosities and can be printed with a special AM platform, known as freeform 3D printing systems. The freeform 3D printing systems are composed of a supporting bath and a printing material. Current supporting matrices that are either commercially purchased or synthesized were usually disposed of after retrieval of the printed part. In this work, we proposed a new and improved supporting matrix comprises of synthesized calcium alginate microgels produced via encapsulation which can be recycled, reused, and recovered for multiple prints, hence minimizing wastage and cost of materials. The dehydration tolerance of the calcium alginate microgels was improved through physical means by the addition of glycerol and chemical means by developing new calcium alginate microgels encapsulated with glycerol. The recyclability of the heated calcium alginate microgels was also enhanced by a rehydration step with sodium chloride solution and a recovery step with calcium chloride solution via the ion exchange process. We envisaged that our reusable and recyclable biocompatible calcium alginate microgels can save material costs, time, and can be applied in various freeform 3D printing systems.

6.
ACS Appl Mater Interfaces ; 12(44): 50105-50112, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33091299

RESUMO

Precise freeform microchannels within an aqueous environment have several biomedical applications but remain a challenge to fabricate. Carbohydrate glass materials have shown potential for three-dimensionally (3D) printing precise, microscale structures and are suitable as a sacrificial material to reconstruct complex channel architectures, but due to the rapid dissolution kinetics in hydrogels and the aqueous environment, protective coatings are required. Here, conformal coatings were applied to carbohydrate structures via surface-initiated photopolymerization (SIP) by incorporating a photoinitiator (PI) into freeform 3D printed isomalt structures using a custom 3D printer. Structures were then immersed into a photocurable prepolymer bath and exposed to light for reaction initiation. To achieve uniform distribution of photoinitiator molecules in 3D printed constructs, miscibility between commercial photoinitiators and isomalt was modeled using the group contribution method. A dye-based, type-two photoinitiator, Eosin Y disodium salt (EY), was selected for its miscibility with isomalt and stability under high temperature. A previously described Eosin Y (EY)/triethanolamine (TEA) radical polymerization system was used to polymerize poly(ethylene glycol) diacrylate (PEGDA). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), surface morphology, and swelling ratio characterizations via SIP were performed. Coatings around freeform structures and solid surfaces were presented to demonstrate the capability of coating complex architectures. This coating method should facilitate the application of 3D sacrificial molding in a variety of hydrogels toward building biomimetic vascular constructs.


Assuntos
Amarelo de Eosina-(YS)/química , Etanolaminas/química , Polietilenoglicóis/síntese química , Impressão Tridimensional , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Polietilenoglicóis/química , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA