Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741270

RESUMO

This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer's disease.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Conectoma/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Cognição/fisiologia , Idoso , Pessoa de Meia-Idade , Aprendizado Profundo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/fisiopatologia , Adulto
2.
Neuroimage ; 298: 120793, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153520

RESUMO

Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.


Assuntos
Análise Espectral , Humanos , Análise Espectral/métodos , Análise Espectral/instrumentação , Aprendizado Profundo , Hemodinâmica/fisiologia
3.
Chemistry ; 30(43): e202400977, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693865

RESUMO

We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.

4.
J Microsc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984663

RESUMO

The wavenumber nonlinearity leads to blurred reconstructed images in spectral-domain optical coherence tomography (SDOCT). In this work, a wavenumber-linearisation method without calibration devices is presented, based on the fact that the difference between the phases of adjacent peak and valley points is equal to π $\pi $ . The theoretical model is derived, and the efficacy of the method was proven by acquiring SDOCT data from TiO2 phantom and zebrafish. The results exhibit the superior performance of our method. Compared with the linear phase-based method, the resolution could be improved at least a factor of 2. Compared with the polynomial fitting method, the resolution could also be improved by nearly half.

5.
Europace ; 26(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38833626

RESUMO

AIMS: Successful ventricular arrhythmia (VA) ablation requires identification of functionally critical sites during contact mapping. Estimation of the peak frequency (PF) component of the electrogram (EGM) may improve correct near-field (NF) annotation to identify circuit segments on the mapped surface. In turn, assessment of NF and far-field (FF) EGMs may delineate the three-dimensional path of a ventricular tachycardia (VT) circuit. METHODS AND RESULTS: A proprietary NF detection algorithm was applied retrospectively to scar-related re-entry VT maps and compared with manually reviewed maps employing first deflection (FDcorr) for VT activation maps and last deflection (LD) for substrate maps. Ventricular tachycardia isthmus location and characteristics mapped with FDcorr vs. NF were compared. Omnipolar low-voltage areas, late activating areas, and deceleration zones (DZ) in LD vs. NF substrate maps were compared. On substrate maps, PF estimation was compared between isthmus and bystander sites. Activation mapping with entrainment and/or VT termination with radiofrequency (RF) ablation confirmed critical sites. Eighteen patients with high-density VT activation and substrate maps (55.6% ischaemic) were included. Near-field detection correctly located critical parts of the circuit in 77.7% of the cases compared with manually reviewed VT maps as reference. In substrate maps, NF detection identified deceleration zones in 88.8% of cases, which overlapped with FDcorr VT isthmus in 72.2% compared with 83.3% overlap of DZ assessed by LD. Applied to substrate maps, PF as a stand-alone feature did not differentiate VT isthmus sites from low-voltage bystander sites. Omnipolar voltage was significantly higher at isthmus sites with longer EGM durations compared with low-voltage bystander sites. CONCLUSION: The NF algorithm may enable rapid high-density activation mapping of VT circuits in the NF of the mapped surface. Integrated assessment and combined analysis of NF and FF EGM-components could support characterization of three-dimensional VT circuits with intramural segments. For scar-related substrate mapping, PF as a stand-alone EGM feature did not enable the differentiation of functionally critical sites of the dominant VT from low-voltage bystander sites in this cohort.


Assuntos
Algoritmos , Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Taquicardia Ventricular , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/cirurgia , Taquicardia Ventricular/diagnóstico , Humanos , Ablação por Cateter/métodos , Técnicas Eletrofisiológicas Cardíacas/métodos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Potenciais de Ação , Idoso , Frequência Cardíaca , Valor Preditivo dos Testes , Processamento de Sinais Assistido por Computador
6.
Network ; : 1-32, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169674

RESUMO

Hand motion detection is particularly important for managing the movement of individuals who have limbs amputated. The existing algorithm is complex, time-consuming and difficult to achieve better accuracy. A DNN is suggested to recognize human hand movements in order to get over these problems.Initially, the raw input EMG signal is captured then the signal is pre-processed using high-pass Butterworth filter and low-pass filter which is utilized to eliminate the noise present in the signal. After that pre-processed EMG signal is segmented using sliding window which is used for solving the issue of overlapping. Then the features are extracted from the segmented signal using Fast Fourier Transform. Then selected the appropriate and optimal number of features from the feature subset using coot optimization algorithm. After that selected features are given as input for deep neural network classifier for recognizing the hand movements of human. The simulation analysis shows that the proposed method obtain 95% accuracy, 0.05% error, precision is 94%, and specificity is 92%.The simulation analysis shows that the developed approach attain better performance compared to other existing approaches. This prediction model helps in controlling the movement of amputee patients suffering from disable hand motion and improve their living standard.

7.
Clin Auton Res ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249159

RESUMO

BACKGROUND: The autonomic nervous system (ANS) is critical in regulating involuntary bodily functions, including heart rate. Heart rate variability (HRV) reflects the complex interplay between the ANS and humoral factors, making it a valuable noninvasive tool for assessing autonomic function. While HRV has been extensively studied in adults, normative data for HRV in children, primarily based on long-term rhythm recordings, are limited. OBJECTIVE: This study aimed to establish comprehensive normative data for HRV in children. METHODS: In this retrospective study, we examined 24-h Holter monitors of children aged 1 day to 18 years, divided into six age groups, at Nemours Children's Health in Orlando, Florida, spanning the years 2013-2023. HRV analysis encompassed time-domain, frequency-domain, and nonlinear indices. RESULTS: Holter data for a total of 247 patients in six age groups were included. An age-related uptrend was observed in all time- and frequency-domain variables except the normalized unit of low-frequency power. Entropy analysis revealed contradictory results among different entropy techniques. Sample and approximate entropy analyses were consistent and showed less complexity and more predictability of HRV with decreasing heart rate, while Shannon entropy analysis showed the opposite. Fractal detrended fluctuation analysis exhibited significant decreases across the age groups, suggestive of diminishing self-similarity of HRV patterns. CONCLUSION: Control of heart rate and HRV is a highly complex process and requires further study for a better understanding. It seems that no single parameter can fully elucidate the entire process. A combination of time-domain, frequency-domain, and nonlinear indices may be necessary to explain HRV behavior in the growing body.

8.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610588

RESUMO

In this paper, we propose and demonstrate a network analysis optical frequency domain reflectometer (NA-OFDR) for distributed temperature measurements at high spatial (down to ≈3 cm) and temperature resolution. The system makes use of a frequency-stepped, continuous-wave (cw) laser whose output light is modulated using a vector network analyzer. The latter is also used to demodulate the amplitude of the beat signal formed by coherently mixing the Rayleigh backscattered light with a local oscillator. The system is capable of attaining high measurand resolution (≈50 mK at 3-cm spatial resolution) thanks to the high sensitivity of coherent Rayleigh scattering to temperature. Furthermore, unlike the conventional optical-frequency domain reflectometry (OFDR), the proposed system does not rely on the use of a tunable laser and therefore is less prone to limitations related to the laser coherence or sweep nonlinearity. Two configurations are analyzed, both numerically and experimentally, based on either a double-sideband or single-sideband modulated probe light. The results confirm the validity of the proposed approach.

9.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257658

RESUMO

Low-resistivity objects produce eddy currents when excited with electromagnetic waves of a certain frequency and then generate an eddy electromagnetic field. A portable frequency-domain electromagnetic exploration system can be used to identify this eddy electromagnetic field, and then the low-resistivity objects can be positioned. At present, portable frequency-domain electromagnetic method (FEM) exploration systems use analog signal compensation, and the sounding depth is generally calculated using empirical formulas. In order to improve the rationality of signal compensation, this paper puts forward a digital signal compensation technology, including a device design, an information extraction method, and a primary field calibration method, and makes an exploration prototype based on the digital signal compensation technology. Using 10 nV as the minimum potential detection capability, the sounding depth of the portable FEM was analyzed, and it was found that when investigating a target with the same depth, a lower frequency required a larger emission current. If this could not be met, the sounding depth became smaller, and a phenomenon appeared in which the lower the operating frequency, the smaller the sounding depth. Through the detection of known underground garages, the apparent conductivity and normalized secondary field anomalies with higher sensitivity were obtained, which indicates that the detection system based on the digital signal compensation technology is effective in practical exploration. Via long-distance detection experiments on cars, it was confirmed that the sounding depth of the portable multi-frequency FEM in practical work indeed decreases with a decrease in the operating frequency.

10.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38676247

RESUMO

Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.


Assuntos
Hemoglobinas , Oxigênio , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Adulto , Reprodutibilidade dos Testes , Oxigênio/metabolismo , Oxigênio/análise , Hemoglobinas/análise , Hemoglobinas/metabolismo , Saturação de Oxigênio/fisiologia , Adulto Jovem , Oxiemoglobinas/metabolismo , Oxiemoglobinas/análise
11.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475102

RESUMO

This research focuses on the analysis of vibration of a compression ignition engine (CIE), specifically examining potential failures in the Fuel Rail Pressure (FRP) and Mass Air Flow (MAF) sensors, which are critical to combustion control. In line with current trends in mechanical system condition monitoring, we are incorporating information from these sensors to monitor engine health. This research proposes a method to validate the correct functioning of these sensors by analysing vibration signals from the engine. The effectiveness of the proposal is confirmed using real data from a Common Rail Direct Injection (CRDi) engine. Simulations using a GT 508 pressure simulator mimic FRP sensor failures and an adjustable potentiometer manipulates the MAF sensor signal. Vibration data from the engine are processed in MATLAB using frequency domain techniques to investigate the vibration response. The results show that the proposal provides a basis for an efficient predictive maintenance strategy for the MEC engine. The early detection of FRP and MAF sensor problems through a vibration analysis improves engine performance and reliability, minimizing downtime and repair costs. This research contributes to the advancement of monitoring and diagnostic techniques in mechanical engines, thereby improving their efficiency and durability.

12.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931757

RESUMO

Remote sensing images are inevitably affected by the degradation of haze with complex appearance and non-uniform distribution, which remarkably affects the effectiveness of downstream remote sensing visual tasks. However, most current methods principally operate in the original pixel space of the image, which hinders the exploration of the frequency characteristics of remote sensing images, resulting in these models failing to fully exploit their representation ability to produce high-quality images. This paper proposes a frequency-oriented remote sensing dehazing Transformer named FOTformer, to explore information in the frequency domain to eliminate disturbances caused by haze in remote sensing images. It contains three components. Specifically, we developed a frequency-prompt attention evaluator to estimate the self-correlation of features in the frequency domain rather than the spatial domain, improving the image restoration performance. We propose a content reconstruction feed-forward network that captures information between different scales in features and integrates and processes global frequency domain information and local multi-scale spatial information in Fourier space to reconstruct the global content under the guidance of the amplitude spectrum. We designed a spatial-frequency aggregation block to exchange and fuse features from the frequency domain and spatial domain of the encoder and decoder to facilitate the propagation of features from the encoder stream to the decoder and alleviate the problem of information loss in the network. The experimental results show that the FOTformer achieved a more competitive performance against other remote sensing dehazing methods on commonly used benchmark datasets.

13.
Sensors (Basel) ; 24(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39275418

RESUMO

Convolutional neural networks (CNNs) have been extensively used in numerous remote sensing image detection tasks owing to their exceptional performance. Nevertheless, CNNs are often vulnerable to adversarial examples, limiting the uses in different safety-critical scenarios. Recently, how to efficiently detect adversarial examples and improve the robustness of CNNs has drawn considerable focus. The existing adversarial example detection methods require modifying CNNs, which not only affects the model performance but also greatly enhances training cost. With the purpose of solving these problems, this study proposes a detection algorithm for adversarial examples that does not need modification of the CNN models and can simultaneously retain the classification accuracy of normal examples. Specifically, we design a method to detect adversarial examples using frequency domain reconstruction. After converting the input adversarial examples into the frequency domain by Fourier transform, the adversarial disturbance from adversarial attacks can be eliminated by modifying the frequency of the example. The inverse Fourier transform is then used to maximize the recovery of the original example. Firstly, we train a CNN to reconstruct input examples. Then, we insert Fourier transform, convolution operation, and inverse Fourier transform into the features of the input examples to automatically filter out adversarial frequencies. We refer to our proposed method as FDR (frequency domain reconstruction), which removes adversarial interference by converting input samples into frequency and reconstructing them back into the spatial domain to restore the image. In addition, we also introduce gradient masking into the proposed FDR method to enhance the detection accuracy of the model for complex adversarial examples. We conduct extensive experiments on five mainstream adversarial attacks on three benchmark datasets, and the experimental results show that FDR can outperform state-of-the-art solutions in detecting adversarial examples. Additionally, FDR does not require any modifications to the detector and can be integrated with other adversarial example detection methods to be installed in sensing devices to ensure detection safety.

14.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065980

RESUMO

During underwater image processing, image quality is affected by the absorption and scattering of light in water, thus causing problems such as blurring and noise. As a result, poor image quality is unavoidable. To achieve overall satisfying research results, underwater image denoising is vital. This paper presents an underwater image denoising method, named HHDNet, designed to address noise issues arising from environmental interference and technical limitations during underwater robot photography. The method leverages a dual-branch network architecture to handle both high and low frequencies, incorporating a hybrid attention module specifically designed for the removal of high-frequency abrupt noise in underwater images. Input images are decomposed into high-frequency and low-frequency components using a Gaussian kernel. For the high-frequency part, a Global Context Extractor (GCE) module with a hybrid attention mechanism focuses on removing high-frequency abrupt signals by capturing local details and global dependencies simultaneously. For the low-frequency part, efficient residual convolutional units are used in consideration of less noise information. Experimental results demonstrate that HHDNet effectively achieves underwater image denoising tasks, surpassing other existing methods not only in denoising effectiveness but also in maintaining computational efficiency, and thus HHDNet provides more flexibility in underwater image noise removal.

15.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066029

RESUMO

Gearbox fault diagnosis is essential in the maintenance and preventive repair of industrial systems. However, in actual working environments, noise frequently interferes with fault signals, consequently reducing the accuracy of fault diagnosis. To effectively address this issue, this paper incorporates the noise attenuation of the DRSN-CW model. A compound fault detection method for gearboxes, integrated with a cross-attention module, is proposed to enhance fault diagnosis performance in noisy environments. First, frequency domain features are extracted from the public dataset by using the fast Fourier transform (FFT). Furthermore, the cross-attention mechanism model is inserted in the optimal position to improve the extraction and recognition rate of global and local fault features. Finally, noise-related features are filtered through soft thresholds within the network structure to efficiently mitigate noise interference. The experimental results show that, compared to existing network models, the proposed model exhibits superior noise immunity and high-precision fault diagnosis performance.

16.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066154

RESUMO

The purpose of this study was to compare different high-intensity interval training (HIIT) protocols with different lengths of work and rest times for a single session (all three had identical work-to-rest ratios and exercise intensities) for cardiac auto-regulation using a wearable device. With a randomized counter-balanced crossover, 13 physically active young male adults (age: 19.4 years, BMI: 21.9 kg/m2) were included. The HIIT included a warm-up of at least 5 min and three protocols of 10 s/50 s (20 sets), 20 s/100 s (10 sets), and 40 s/200 s (5 sets), with intensities ranging from 115 to 130% Wattmax. Cardiac auto-regulation was measured using a non-invasive method and a wearable device, including HRV and vascular function. Immediately after the HIIT session, the 40 s/200 s protocol produced the most intense stimulation in R-R interval (Δ-33.5%), ln low-frequency domain (Δ-42.6%), ln high-frequency domain (Δ-73.4%), and ln LF/HF ratio (Δ416.7%, all p < 0.05) compared to other protocols of 10 s/50 s and 20 s/100 s. The post-exercise hypotension in the bilateral ankle area was observed in the 40 s/200 s protocol only at 5 min after HIIT (right: Δ-12.2%, left: Δ-12.6%, all p < 0.05). This study confirmed that a longer work time might be more effective in stimulating cardiac auto-regulation using a wearable device, despite identical work-to-rest ratios and exercise intensity. Additional studies with 24 h measurements of cardiac autoregulation using wearable devices in response to various HIIT protocols are warranted.


Assuntos
Frequência Cardíaca , Treinamento Intervalado de Alta Intensidade , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Treinamento Intervalado de Alta Intensidade/métodos , Adulto Jovem , Frequência Cardíaca/fisiologia , Adulto , Estudos Cross-Over , Coração/fisiologia , Exercício Físico/fisiologia
17.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400410

RESUMO

We describe a method for reducing the cost of optical frequency domain reflectometer (OFDR) hardware by replacing two reference channels, including an auxiliary interferometer and a gas cell, with a single channel. To extract useful information, digital signal processing methods were used: digital frequency filtering, as well as empirical mode decomposition. It is shown that the presented method helps to avoid the use of an unnecessary analog-to-digital converter and photodetector, while the OFDR trace is restored by the equal frequency resampling (EFR) algorithm without loss of high resolution and with good measurement repeatability.

18.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39205095

RESUMO

This article presents a comprehensive collection of formulas and calculations for hand-crafted feature extraction of condition monitoring signals. The documented features include 123 for the time domain and 46 for the frequency domain. Furthermore, a machine learning-based methodology is presented to evaluate the performance of features in fault classification tasks using seven data sets of different rotating machines. The evaluation methodology involves using seven ranking methods to select the best ten hand-crafted features per method for each database, to be subsequently evaluated by three types of classifiers. This process is applied exhaustively by evaluation groups, combining our databases with an external benchmark. A summary table of the performance results of the classifiers is also presented, including the percentage of classification and the number of features required to achieve that value. Through graphic resources, it has been possible to show the prevalence of certain features over others, how they are associated with the database, and the order of importance assigned by the ranking methods. In the same way, finding which features have the highest appearance percentages for each database in all experiments has been possible. The results suggest that hand-crafted feature extraction is an effective technique with low computational cost and high interpretability for fault identification and diagnosis.

19.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400456

RESUMO

Distributed optical fibre sensing (DOFS)-based strain measurement systems are now routinely deployed across infrastructure health monitoring applications. However, there are still practical performance and measurement issues associated with the fibre's attachment method, particularly with thermoplastic pipeline materials (e.g., high-density polyethylene, HDPE) and adhesive affixment methods. In this paper, we introduce a new optical fibre installation method that utilises a hot-weld encapsulation approach that fully embeds the fibre onto the pipeline's plastic surface. We describe the development, application and benefits of the new embedment approach (as compared to adhesive methods) and illustrate its practical performance via a full-scale, real-world, dynamic loading trial undertaken on a 1.8 m diameter, 6.4 m long stormwater pipeline structure constructed from composite spiral-wound, steel-reinforced, HDPE pipe. The optical frequency domain reflectometry (OFDR)-based strain results show how the new method improves strain transference and dynamic measurement performance and how the data can be easily interpreted, in a practical context, without the need for complex strain transfer functions. Through the different performance tests, based on UK rail-road network transport loading conditions, we also show how centimetre- to metre-scale strain variations can be clearly resolved at the frequencies and levels consistent with transport- and construction-based, buried infrastructure loading scenarios.

20.
Sensors (Basel) ; 24(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39338725

RESUMO

This article presents a comprehensive study on the impact of irradiation optical fiber cores with a femtosecond-pulsed laser, operating at a wavelength of 1030 nm, on the signal amplitude in Rayleigh scattering-based optical frequency domain reflectometry (OFDR). The experimental study involves two fibers with significantly different levels of germanium doping: the standard single-mode fiber (SMF-28) and the ultra-high numerical aperture fiber (UHNA7). The research findings reveal distinct characteristics of reflected and scattered light amplitudes as a function of pulse energy. Although different amplitude changes are observed for the examined fibers, both can yield an enhancement of amplitude. The paper further investigates the effect of fiber Bragg grating inscription on the overall amplitude of reflected light. The insights gained from this study could be beneficial for controlling the enhancement of light scattering amplitude in fibers with low or high levels of germanium doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA