Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(9): e2307611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863821

RESUMO

Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self-assembly, and electronic structure of 2D arrays of [5,5]-C90 fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]-CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms.

2.
Small ; : e2401963, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850187

RESUMO

Controlling the self-assembly of nanoparticle building blocks into macroscale soft matter structures is an open question and of fundamental importance to fields as diverse as nanomedicine and next-generation energy storage. Within the vast library of nanoparticles, the fullerenes-a family of quasi-spherical carbon allotropes-are not explored beyond the most common, C60. Herein, a facile one-pot method is demonstrated for functionalizing fullerenes of different sizes (C60, C70, C84, and C90-92), yielding derivatives that self-assemble in aqueous solution into supramolecular hydrogels with distinct hierarchical structures. It is shown that the mechanical properties of these resultant structures vary drastically depending on the starting material. This work opens new avenues in the search for control of macroscale soft matter structures through tuning of nanoscale building blocks.

3.
Chemistry ; 30(35): e202401284, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642344

RESUMO

Bis-porphyrin cages have long been exploited to bind fullerenes selectively for various applications. The major consideration for an effective binding here had been the cavity size. Herein, we structurally demonstrate that a bis-Ni-porphyrin cavitand having even a smaller cavity can host a larger fullerene by a breathing and ruffling mechanism. It has also been shown that both the electronic and steric influence at the meso- positions of the porphyrin in fact dictate the binding character. The smaller cavity of 2NiD exhibits preferential binding for C70 over C60; however, surprisingly, the larger cavities in 2HD and 2NiTD display stronger affinities for C60 over the larger fullerene. We show here that the structural elasticity infused both by the metalloporphyrins and the connecting bridges play a major role in directing the binding. These conclusions have adequately been supported by structural and spectroscopic investigations. Additionally, the suitability of one of the conjugates for photoinduced charge-separation has been investigated using ultrafast transient absorption measurements. 2NiD⊃C60 has a charge separation timescale of ~0.8 ps, while charge recombination occurs at a longer timescale of ~920 ps.

4.
Chemistry ; : e202402027, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923129

RESUMO

Supramolecular complexes of carbon nanohoops with fullerenes play a key role for the design of novel nanomaterials with technological applications. Herein we investigate with density functional theory (DFT) methods the capability of neutral and dioxidized cycloparaphenylenes (CPPs) to encapsulate all-boron fullerene B40. Our results show that [9]CPP and [10]CPP are feasible host candidates to encapsulate B40 displaying comparable complexation energies with the all-carbon analog [10]CPP⊃C60. Upon dioxidation the host-guest interactions are not affected, whereas the positive charge is delocalized on the CPPs leading to global aromatic character of the hosts. Consequently, the dicationic complexes [n]CPP2+⊃B40 and [10]CPP2+⊃C60 display augmented global shielding cones that strongly shield the guests, as manifested by large upfield shifts in 11B-NMR and 13C-NMR signals. Hence, CPP complexes with carbon fullerenes can be extended borospherene B40 host-guest complexes, as well as to doubly oxidized species stabilized by global host aromaticity, expanding our understanding of carbon nanohoop complexes to boron-based fullerenes.

5.
Chemistry ; 30(33): e202400915, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38616170

RESUMO

A new concept for the regioselective synthesis of Hamilton-receptor and cyanurate-functionalized oligo adducts of the fullerene C60 was developed. Based on an in-situ deprotection and click-post-functionalization approach with novel azido precursors, the corresponding fullerene hexakis-adducts with octahedral addition patterns and up to twelve Hamilton-receptor/cyanurate moieties surrounding the fullerene sphere were synthesized. The versatility of this approach was further demonstrated by the synthesis of Hamilton-receptor/cyanurate functionalized fullerene mono-adducts, which are not accessible by direct cyclopropanation. Several fullerene target compounds were purified by simple washing procedures of the solid crude reaction mixture without the need for chromatography. The resulting fullerene mono- and hexakis-adducts were fully characterized and their supramolecular properties were investigated by NMR-spectroscopy and isothermal titration calorimetry (ITC).

6.
Chemphyschem ; : e202400435, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775747

RESUMO

Buckybowl tweezers are a relatively young research area closely associated with the development of non-planar polycyclic aromatic systems and supramolecular chemistry. Since the appearance of the first prototypes in the early 2000s, the tweezers have undergone evolutionary changes. Nowadays they are able to effectively interact with fullerenes and the results opened up prospects for development in the field of sensing, nonlinear optics, and molecular switchers. In the present study, examples of corannulene-based and other buckybowl tweezers for the recognition of C60 and C70 fullerenes were summarized and analyzed. The main structural components of the tweezers were also reviewed in detail and their role in the formation of complexes with fullerenes was evaluated. The revealed structural patterns should trigger the development of novel recognition systems and materials with a wide range of applications.

7.
Chemphyschem ; 25(4): e202300498, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38055206

RESUMO

We introduce a non-orthogonal configuration interaction approach to investigate nuclear quantum effects on energies and densities of confined fermionic nuclei. The Hamiltonian employed draws parallels between confined systems and many-electron atoms, where effective non-Coulombic potentials represent the interactions of the trapped particles. One advantage of this method is its generality, as it offers the potential to study the nuclear quantum effects of various confined species affected by effective isotropic or anisotropic potentials. As a first application, we analyze the quantum states of two 3 He atoms encapsulated in C60 . At the Hartree-Fock level, we observe the breaking of spin and spatial symmetries. To ensure wavefunctions with the correct symmetries, we mix the broken-symmetry Hartree-Fock states within the non-orthogonal configuration interaction expansion. Our proposed approach predicts singly and triply degenerate ground states for the singlet (para-3 He2 @C60 ) and triplet (ortho-3 He2 @C60 ) nuclear spin configurations, respectively. The ortho-3 He2 @C60 ground state is 5.69 cm-1 higher in energy than the para-3 He2 @C60 ground state. The nuclear densities obtained for these states exhibit the icosahedral symmetry of the C60 embedding potential. Importantly, our calculated energies for the lowest 85 states are in close agreement with perturbation theory results based on a harmonic oscillator plus rigid rotor model of 3 He2 @C60 .

8.
Chirality ; 36(4): e23663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561600

RESUMO

Optically active left (M)- and right (P)-handed helical syndiotactic poly(methyl methacrylate)s (M- and P-st-PMMAs) with a helicity memory enantioselectively encapsulated the racemic C60 derivatives, such as 3,4-fulleroproline tert-butyl ester (rac-1) and tetraallylated C60 (rac-2), as well as the C60-bound racemic 310-helical peptides (rac-3) within their helical cavities to form peapod-like inclusion complexes and a unique "helix-in-helix" superstructure, respectively. The enantiomeric excess (ee) and separation factor (enantioselectivity) (α) of the analyte 1 (ee = 23%-25% and α = 2.35-2.50) encapsulated within the helical cavities of the M- and P-st-PMMAs were higher than those of the analytes 2 and 3 (ee = 4.3%-6.0% and α = 1.28-1.50). The optically pure (S)- and (R)-1 were found to more efficiently induce an excess one-handed helical conformation in the st-PMMA backbone than the optically pure (S)- and (R)-1-phenylethylamine, resulting in intense mirror-image vibrational circular dichroism (VCD) spectra in the PMMA IR regions. The excess one-handed helices induced in the st-PMMAs complexed with (S)- and (R)-1 were memorized after replacement with the achiral C60, and the complexes exhibited induced electric CDs in the achiral C60 chromophore regions.

9.
Cell Biochem Funct ; 42(2): e3963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424684

RESUMO

Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90 ) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.


Assuntos
Anti-Infecciosos , Fulerenos , Fulerenos/farmacologia , Mycobacterium smegmatis , Anti-Infecciosos/farmacologia , Biofilmes , Parede Celular
10.
Sci Technol Adv Mater ; 25(1): 2315014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419801

RESUMO

The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 µm and 3.4 ± 0.4 µm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 µm and 1.2 ± 0.2 µm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 µg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 µg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.


Self-assembled fullerenes with large aspect ratios modulate the morphology and gene expression of endothelial cells within a soft biomimetic 3D microenvironment, representing a promising new vascularization strategy in tissue engineering.

11.
Nano Lett ; 23(7): 2726-2732, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36970777

RESUMO

The thermoelectric properties of molecular junctions consisting of a metal Pt electrode contacting [60]fullerene derivatives covalently bound to a graphene electrode have been studied by using a conducting-probe atomic force microscope (c-AFM). The [60]fullerene derivatives are covalently linked to the graphene via two meta-connected phenyl rings, two para-connected phenyl rings, or a single phenyl ring. We find that the magnitude of the Seebeck coefficient is up to nine times larger than that of Au-C60-Pt molecular junctions. Moreover, the sign of the thermopower can be either positive or negative depending on the details of the binding geometry and on the local value of the Fermi energy. Our results demonstrate the potential of using graphene electrodes for controlling and enhancing the thermoelectric properties of molecular junctions and confirm the outstanding performance of [60]fullerene derivatives.

12.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255765

RESUMO

The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules. The goal of this work is to perform the first molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2, and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes with them. The density and hydrophobicity inside the complex are greater than in dendrimers without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions of complexes less accessible to water and counterions and increases electrostatic and zeta potential compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly dendrimer could be used as nanocontainers for the delivery of fullerenes.


Assuntos
Dendrímeros , Fabaceae , Fulerenos , Glicina , Lisina , Simulação de Dinâmica Molecular , Peptídeos , Água
13.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279316

RESUMO

The spin theory of fullerenes is taken as a basis concept to virtually exhibit a peculiar role of C60 fullerene in the free radical polymerization of vinyl monomers. Virtual reaction solutions are filled with the initial ingredients (monomers, free radicals, and C60 fullerene) as well as with the final products of a set of elementary reactions, which occurred in the course of the polymerization. The above objects, converted to the rank of digital twins, are considered simultaneously under the same conditions and at the same level of the theory. In terms of the polymerization passports of the reaction solutions, a complete virtual picture of the processes considered is presented.


Assuntos
Fulerenos , Polimerização , Radicais Livres , Cloreto de Polivinila
14.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257360

RESUMO

Tri-metallofullerenes, specifically M3@C80 where M denotes rare-earth metal elements, are molecules that possess intriguing magnetic properties. Typically, only one metal element is involved in a given tri-metallofullerene molecule. However, mixed tri-metallofullerenes, denoted as M1xM23-x@C80 (x = 1 or 2, M1 and M2 denote different metal elements), have not been previously discovered. The investigation of such mixed tri-metallofullerenes is of interest due to the potential introduction of distinct properties resulting from the interaction between different metal atoms. This paper presents the preparation and theoretical analysis of mixed rare-earth tri-metallofullerenes, specifically YxDy3-x@C80 (x = 1 or 2). Through chemical oxidation of the arc-discharge produced soot, the formation of tri-metallofullerene cations, namely Y2Dy@C80+ and YDy2@C80+, has been observed. Density functional theory (DFT) calculations have revealed that the tri-metallofullerenes YxDy3-x@C80 (x = 1 or 2) exhibit a low oxidation potential, significantly lower than other fullerenes such as C60 and C70. This low oxidation potential can be attributed to the relatively high energy level of a singly occupied orbital. Additionally, the oxidized species demonstrate a large HOMO-LUMO gap similar to that of YxDy3-xN@C80, underscoring their high chemical stability. Theoretical investigations have uncovered the presence of a three-center two-electron metal-metal bond at the center of Y2DY@C80+ and YDy2@C80+. This unique multi-center bond assists in alleviating the electrostatic repulsion between the metal ions, thereby contributing to the overall stability of the cations. These mixed rare-earth tri-metallofullerenes hold promise as potential candidates for single-molecule magnets.

15.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998907

RESUMO

Currently, lithium-ion batteries have an increasingly urgent need for high-performance electrolytes, and additives are highly valued for their convenience and cost-effectiveness features. In this work, the feasibilities of fullerenes and fluorinated fullerenes as typical bis(fluorosulfonyl)imide/1,2-dimethoxymethane (LiFSI/DME) electrolyte additives are rationally evaluated based on density functional theory calculations and molecular dynamic simulations. Interestingly, electronic structures of C60, C60F2, C60F4, C60F6, 1-C60F8, and 2-C60F8 are found to be compatible with the properties required as additives. It is noted that that different numbers and positions of F atoms lead to changes in the deformation and electronic properties of fullerenes. The F atoms not only show strong covalent interactions with C cages, but also affect the C-C covalent interaction in C cages. In addition, molecular dynamic simulations unravel that the addition of trace amounts of C60F4, C60F6, and 2-C60F8 can effectively enhance the Li+ mobility in LiFSI/DME electrolytes. The results expand the range of applications for fullerenes and their derivatives and shed light on the research into novel additives for high-performance electrolytes.

16.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731411

RESUMO

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Assuntos
Fulerenos , Simulação de Dinâmica Molecular , Muramidase , Ligação Proteica , Fulerenos/química , Muramidase/química , Muramidase/metabolismo , Sítios de Ligação , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas/química , Proteínas/metabolismo , Protease de HIV
17.
Angew Chem Int Ed Engl ; 63(9): e202316243, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198178

RESUMO

A saddle-shaped π-extended zinc porphyrin containing a peripheral pyridyl ligand undergoes quantitative self-assembly into a cyclic trimer. The trimer has a prismatic structure with negatively curved side walls, which promote the formation of supramolecular organic frameworks stabilized by dispersion interactions. The first framework type, UWr-1, has the npo topology, with a hexagonal structure analogous to the Schwartz H triply periodic minimal surface. Co-crystallization of the trimer with either C60 and C70 produces the isomorphous cubic UWr-2 and UWr-3 phases, characterized by the ctn network topology and a structural relationship to the Fischer-Koch minimal surface S. All three phases contain complex labyrinths of solvent-filled channels, corresponding to very large probe-accessible volumes (68 % to 76 %). The UWr-2 network could be partly desolvated while retaining its long range dimensional order, indicating remarkable strength of the dispersion interactions in the crystal. A theoretical analysis of noncovalent interactions shows the role of geometrical matching between the negatively curved porphyrin units and positively curved fullerenes.

18.
Angew Chem Int Ed Engl ; 63(22): e202402255, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38551062

RESUMO

With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites. The conformations of the trimeric nanorings COTCNR1 and COTCNR2 are shape-persistent, whereas the tetrameric COTCNR3 possesses a flexible carbon skeleton which undergoes conformational changes upon forming host-guest complexes with fullerenes (C60 and C70), whose co-crystals may potentially serve as fullerene-based semiconducting supramolecular wires with electrical conductivities on the order of 10-7 S cm-1 (for C60⊂COTCNR3) and 10-8 S cm-1 (for C70⊂COTCNR3) under ambient conditions. This research not only describes highly efficient one-step syntheses of three cyclooctatetraene-embedded carbon nanorings which feature hoop-shaped segments of distinctive topological carbon schwarzites, but also demonstrates the potential application in electronics of the one-dimensional fullerene arrays secured by COTCNR3.

19.
Beilstein J Org Chem ; 20: 272-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379734

RESUMO

The regioselective functionalization of fullerenes holds significant promise for applications in the fields of medicinal chemistry, materials science, and photovoltaics. In this study, we investigate the regioselectivity of the rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions between diynes and C70 as a novel procedure for generating C70 bis(fulleroid) derivatives. The aim is to shed light on the regioselectivity of the process through both experimental and computational approaches. In addition, the photooxidation of one of the C-C double bonds in the synthesized bis(fulleroids) affords open-cage C70 derivatives having a 12-membered ring opening.

20.
Chembiochem ; 24(21): e202300455, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37497578

RESUMO

For the development of delivery systems, the solubilization of hydrophobic guest molecules in water is an important yet challenging task. This can be achieved by preparing stable aqueous solutions with a high concentration of guest molecules using a natural product as a solubilizing agent and a mechanochemical high-speed vibration milling apparatus as a solubilizing method. Various solubilizing agent-guest molecule complexes can be obtained via the exchange between solubilizing agents, which enables the "on-off" switching of the properties of functional guest molecules, such as fluorescence intensity, and photodynamic activity. In the exchange method, guest molecules can transfer into cell membranes such as lysosomes and exosomes. Therefore, the exchange method of the solubilizing agents not only creates novel solubilizing agent-guest molecule complexes but also is applied to drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Água , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA