Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851

RESUMO

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
2.
Nano Lett ; 24(34): 10547-10553, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140754

RESUMO

Two-dimensional transition metal carbides/nitrides (MXenes) have shown great promise in various applications. However, mass production of MXenes suffers from the excessive use of toxic fluorine-containing reagents. Herein, a new method was validated for synthesizing MXenes from five MAX ceramics. The method features a minimized (stoichiometric) dosage of F-containing reagent (NaBF4) and polyols (glycerol, erythritol, and xylitol) as the reaction solvent. Due to the sweetness of polyols and the low environmental impact, we refer to this method as a "sweet" synthesis of MXenes. An in-depth molecular dynamics simulation study, combined with experimental kinetic parameters, further revealed that the diffusion of F- in the confined interplanar space is rate-determining for the etching reaction. The expansion of interlayer spacing by polyols effectively reduces the diffusion activation energy of F- and accelerates the etching reaction.

3.
Small ; 20(5): e2305136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759415

RESUMO

This work addresses the challenges in developing carbon fiber paper-based supercapacitors (SCs) with high energy density by focusing on the limited capacity of carbon fiber. To overcome this limitation, a sponge-like porous carbon fiber paper enriched with oxygen functional groups (OFGs) is prepared, and Cu(OH)2 nanorods are grown on its surface to construct the SC anode. This design results in a multi-layered carbon fiber paper-based electrode with a specific structure and enhanced capacitance. The Cu(OH)2 @PCFP anode exhibits an areal capacitance of 547.83 mF cm-2 at a current density of 1 mA cm-2 and demonstrates excellent capacitance retention of 99.8% after 10 000 cycles. Theoretical calculations further confirm that the Cu(OH)2 /OFGs-graphite heterostructure exhibits higher conductivity, facilitating faster charge transfer. A solid-state SC is successfully assembled using Ketjen Black@PCFP as the cathode and KOH/PVA as the gel electrolyte. The resulting device exhibits an energy density of 0.21 Wh cm-2 at 1.50 mW cm-2 , surpassing the performance of reported Cu(OH)2 SCs. This approach, combining materials design with an understanding of underlying mechanisms, not only expands the range of electrode materials but also provides valuable insights for the development of high-capacity energy storage devices.

4.
Small ; : e2312122, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709229

RESUMO

Management of functional groups in hole transporting materials (HTMs) is a feasible strategy to improve perovskite solar cells (PSCs) efficiency. Therefore, starting from the carbazole-diphenylamine-based JY7 molecule, JY8 and JY9 molecules are incorporated into the different electron-withdrawing groups of fluorine and cyano groups on the side chains. The theoretical results reveal that the introduction of electron-withdrawing groups of JY8 and JY9 can improve these highest occupied molecular orbital (HOMO) energy levels, intermolecular stacking arrangements, and stronger interface adsorption on the perovskite. Especially, the results of molecular dynamics (MD) indicate that the fluorinated JY8 molecule can yield a preferred surface orientation, which exhibits stronger interface adsorption on the perovskite. To validate the computational model, the JY7-JY9 are synthesized and assembled into PSC devices. Experimental results confirm that the HTMs of JY8 exhibit outstanding performance, such as high hole mobility, low defect density, and efficient hole extraction. Consequently, the PSC devices based on JY8 achieve a higher PCE than those of JY7 and JY9. This work highlights the management of the electron-withdrawing groups in HTMs to realize the goal of designing HTMs for the improvement of PSC efficiency.

5.
Small ; 20(34): e2309756, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602191

RESUMO

Control over particle size and shape heterogeneity is highly relevant to the design of photonic coatings and supracolloidal assemblies. Most developments in the area have relied on mineral and petroleum-derived polymers that achieve well-defined chemical and dimensional characteristics. Unfortunately, it is challenging to attain such control when considering renewable nanoparticles. Herein, a pathway toward selectable biobased particle size and physicochemical profiles is proposed. Specifically, lignin is fractionated, a widely available heterogeneous polymer that can be dissolved in aqueous solution, to obtain a variety of monodispersed particle fractions. A two-stage cascade and density gradient centrifugation that relieves the need for solvent pre-extraction or other pretreatments but achieves particle bins of uniform size (~60 to 860 nm and polydispersity, PDI<0.06, dynamic light scattering) along with characteristic surface chemical features is introduced. It is found that the properties and associated colloidal behavior of the particles are suitably classified in distinctive size populations, namely, i) nanoscale (50-100 nm), ii) photonic (100-300 nm) and iii) near-micron (300-1000 nm). The strong correlation that exists between size and physicochemical characteristics (molar mass, surface charge, bonding and functional groups, among others) is introduced as a powerful pathway to identify nanotechnological uses that benefit from the functionality and cost-effectiveness of biogenic particles.

6.
Small ; : e2404438, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101630

RESUMO

Hematite (α-Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC-WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α-Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal-organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2-substitution of different organic functional groups (─H, ─Br, ─NO2 and ─NH2). The α-Fe2O3 photoanode loaded with FeNi-NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm-2) at 1.23 VRHE, which is 2.33 times that of the pure α-Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α-Fe2O3 photoanodes. The ─NH2 group as an electron-donor group can effectively regulate the electron distribution and band structure of α-Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC-WS performance of α-Fe2O3 photoanode.

7.
Small ; : e2309580, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705865

RESUMO

Li-ion batteries with superior interior thermal management are crucial to prevent thermal runaway and ensure safe, long-lasting operation at high temperatures or during rapid discharging and charging. Typically, such thermal management is achieved by focusing on the separator and electrolyte. Here, the study introduces a Se-terminated MXene free-standing electrode with exceptional electrical conductivity and low infrared emissivity, synergistically combining high-rate capacity with reduced heat radiation for safe, large, and fast Li+ storage. This is achieved through a one-step organic Lewis acid-assisted gas-phase reaction and vacuum filtration. The Se-terminated Nb2Se2C outperformed conventional disordered O/OH/F-terminated materials, enhancing Li+-storage capacity by ≈1.5 times in the fifth cycle (221 mAh·g-1 at 1 A·g-1) and improving mid-infrared adsorption with low thermal radiation. These benefits result from its superior electrical conductivity, excellent structural stability, and high permittivity in the infrared region. Calculations further reveal that increased permittivity and conductivity along the z-direction can reduce heat radiation from electrodes. This work highlights the potential of surface groups-terminated layered material-based free-standing flexible electrodes with self-thermal management ability for safe, fast energy storage.

8.
Glob Chang Biol ; 30(7): e17411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001641

RESUMO

Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.


Assuntos
Biodiversidade , Solo , China , Solo/química , Ecossistema , Microbiologia do Solo , Atividades Humanas , Humanos , Fungos , Florestas
9.
Glob Chang Biol ; 30(8): e17475, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149922

RESUMO

Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17-year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N-fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function.


Assuntos
Bactérias , Metais , Microbiota , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Metais/metabolismo , Fungos/fisiologia , Fungos/metabolismo , Pradaria , Micorrizas/fisiologia , Concentração de Íons de Hidrogênio
10.
Chemistry ; 30(29): e202304065, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38487973

RESUMO

Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.

11.
Chemistry ; 30(22): e202400074, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366948

RESUMO

Conductive additives are of great importance for the adequate utilization of active materials in all-solid-state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g-1, which is much higher than the 130.8 mAh g-1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen-containing functional groups for conductive additives, lightening the prospect of low-cost 0D conductive additives for practical ASSLBs.

12.
Ecol Appl ; 34(2): e2931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950629

RESUMO

Wetlands in arid or semiarid zones are vital for maintaining biodiversity but face growing threats. Flooding regime variability is a key driver of ecological dynamism in these systems, dictating primary productivity on a large spatial scale. The functional composition or diversity of wetland-dependent bird species has been found to be sensitive to fluctuations in hydrological regimes and can thus be indicative of cascading ecosystem responses associated with climate change. In this paper, we investigate whether large-scale changes in inundation and fire-a significant additional biodiversity determinant in (semi-)arid landscapes-are reliable predictors of functional group responses of wetland-dependent birds along a perennial channel of the Okavango Delta, Botswana. We fit generalized additive models (GAMs) to 6 years of bird survey data collected along ~190-km-long annual transects and use remotely sensed landscape-level inundation estimates, as well as spatiotemporal distance to fire, to predict the responsiveness of seven trait-based functional group abundances. During the surveys, a total of 89 different wetland-dependent bird species were recorded, including 76 residents, across all years, with below-surface feeding waders consistently the most abundant functional group. Including estimated spatiotemporal variability in flooding and fire, as well as their interactions, improved model fit for all seven functional groups, explaining between 46.8% and 68.3% of variability in functional group abundances. Covariates representing longer-term variability in inundation generally performed better than shorter-term ones. For example, variability in inundation over the 5 months preceding a survey best predicted the responses of all functional groups, which also all exhibited responsiveness to the interaction between flooding and fire. We were able to interpret the responses of individual functional groups, based on the resource exploitation assumption. Overall, our results suggest that perennial waters in dryland wetlands offer functional refugia to wetland-dependent birds and highlight the indicative power of large-scale trait-based bird monitoring. Our findings demonstrate the potential utility of such a monitoring regime for dryland wetland ecosystems vulnerable to industrial-scale anthropogenic pressure and associated climate change.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Biodiversidade , Aves , Inundações
13.
Microb Ecol ; 87(1): 58, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602532

RESUMO

Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.


Assuntos
Microbiota , Micorrizas , China , Florestas , Raios gama , Solo
14.
Environ Sci Technol ; 58(22): 9896-9907, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38669322

RESUMO

Efficient use of humic acid (HA) for eco-friendly farming and environmental remediation requires further understanding of how targeted modification of HA affects the chemical structure of HA and thereby its effectiveness in enhancing soil quality. We developed novel selective modifiers (SMs) for extracting HA by codoping sodium and copper elements into the birnessite lattice. The structure of SMs was thoroughly examined, and the HAs extracted using SMs, referred to as SMHs, were subjected to a detailed evaluation of their functional groups, molecular weight, carbon composition, flocculation limits, and effectiveness in saline soil remediation. The results showed that replacing manganese with sodium and copper in SMs alters the valence state and reactive oxygen species. In contrast, SMHs exhibited increased acidic functional groups, a lower molecular weight, and transformed aliphatic carbon. Furthermore, the saline soil was improved through increased salt leaching and an optimized soil aggregate structure by SMHs. This research highlights the importance of targeted modification of HA and demonstrates the potential of these modifiers in improving soil quality for eco-friendly farming and environmental remediation.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo
15.
Environ Sci Technol ; 58(32): 14450-14459, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088507

RESUMO

Dissolved organic matter (DOM) can affect the transformation of pollutants through photosensitization, but most current research focuses on hydrophilic pollutants, making it such that less attention is paid to hydrophobic pollutants. In this paper, the effect and action mechanism of coexisting DOM on the photodegradation of decachlorobiphenyl (PCB-209) on suspended particles collected from the Yellow River were systematically investigated in a heterogeneous system using DOM standards and model compounds. Through molecular probe experiments, mass spectrometry analysis and theoretical calculations, we found that the excited triplet state of DOM (3DOM*) could excite PCB-209 to undergo dechlorination reaction. Due to the different modes of electron transition, the presence of carbonyl groups decreased the energy of 3DOM*, whereas the electron-donating groups made the energy of 3DOM* higher. DOM containing phenolic hydroxyl groups led to a higher steady-state concentration of •OH, and DOM containing phenyl ketone structures had a stronger ability to produce •O2-. Compared with aqueous •OH, •O2- produced from hydrophobic microregions could react more readily with PCB-209. This study deepens the understanding of the role of different functional groups of DOM in the photosensitized transformation of hydrophobic compounds.


Assuntos
Fotólise , Bifenilos Policlorados/química , Poluentes Químicos da Água/química
16.
Environ Sci Technol ; 58(26): 11542-11553, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871676

RESUMO

Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Polivinila , Esgotos , Esgotos/microbiologia , Cloreto de Polivinila/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Anaerobiose , Interações Microbianas
17.
Environ Sci Technol ; 58(24): 10752-10763, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848107

RESUMO

Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity. Herein, PCM-like polymers (PLPs) with controlled placement of nitrogenous functional groups [i.e., quaternary ammonium (QA), pyridine, and pyridinium cations (py+)] were employed as model systems to investigate PCM-enhanced TCP degradation by sulfide. Our results suggest that both PLP-QA and PLP-py+ were highly effective in facilitating TCP dechlorination by sulfide with half-lives of 16.91 ± 1.17 and 0.98 ± 0.15 days, respectively, and the reactivity increased with surface nitrogenous group density. A two-step process was proposed for TCP dechlorination, which is initiated by reductive ß-elimination, followed by nucleophilic substitution by surface-bound sulfur nucleophiles. The TCP degradation kinetics were not significantly affected by cocontaminants (i.e., 1,1,1-trichloroethane or trichloroethylene), but were slowed by natural organic matter. Our results show that PLPs containing certain nitrogen functional groups can facilitate the rapid and complete degradation of TCP by sulfide, suggesting that similarly functionalized PCM might form the basis for a novel process for the remediation of TCP-contaminated groundwater.


Assuntos
Polímeros , Sulfetos , Sulfetos/química , Polímeros/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Carbono/química , Propano/análogos & derivados
18.
Biometals ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789822

RESUMO

The bioactive compounds contained within many plants account for their pharmacological values. Aloe vera has a wide range of organic and inorganic components, including carbohydrate polymers, glucomannans, and a variety of other natural and synthetic materials. The study aims to take a look into the characteristics of some metal complexes produced from Aloe vera extracts. The extracts from Aloe vera were derived by means of acetone, distilled water and ethanol. The solubility of the metal complexes with the ligand at varying temperatures was established. FT-IR was used to carry out the infra-red examination of the ligand. The results revealed that alcoholic extract of Aloe vera leaf was not soluble in Cu, Fe, or Zn but only soluble in Fe, the extract by distilled water was soluble in Cu, Fe and Zn. However, the Aloe vera in acetone as well as in the Zn (II) and Cu (II) composites displayed a bending that was found at 1430.97 cm-1, 1500.01 cm-1 and 1615.90 cm-1.every functional groups are assigned to be coordinating sites as a result of increase or decrease in the wave number, and absorption band. Findings from the investigation reveal that the complexion of the metal salts with diverse donor sites in the extract is indicated by an increase in the absorption peak of the functional groups in the metal composites of the extracts.

19.
Environ Res ; 261: 119688, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074771

RESUMO

Thermal stratification in lakes and reservoirs may intensify and become more persistent with global warming. Periodic thermal stratification is a naturally occurring phenomenon that indicates a transition in aquatic ecosystem homeostasis, which could lead to the deterioration of water quality and impaired aquatic communities. However, the responses of communities and associated nutrient cycling processes to periodic thermal stratification are still poorly understood. This study delved into the changes in water quality, algal-bacterial communities, and functional diversity influenced by thermal stratification succession, and their relationship with nutrient cycling. The results indicated that the apparent community dynamics were driven by environmental factors, with ammonium (NH4+) and nitrate (NO3--N) being the most important factors that influenced the algal and bacterial community structure, respectively. Ecological niche widths were narrower during thermal stratification, exacerbating the antagonism of the communities, and stochastic processes dominated community assembly. Then, the complexities of the co-occurrence network decreased with succession. Algal community assembly became more deterministic, while bacterial assembly became more stochastic. Moreover, the roles of algal-bacterial multidiversity in nutrient cycling differed: bacterial diversity enhanced nutrient cycling, whereas algal diversity had the opposite effect. These findings broadened our understanding of microbial ecological mechanisms to environmental change and provided valuable ecological knowledge for securing water supplies in drinking water reservoirs.

20.
Part Fibre Toxicol ; 21(1): 21, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658944

RESUMO

BACKGROUND: Increasing attention is being paid to the environmental and health impacts of nanoplastics (NPs) pollution. Exposure to nanoplastics (NPs) with different charges and functional groups may have different adverse effects after ingestion by organisms, yet the potential ramifications on mammalian blood glucose levels, and the risk of diabetes remain unexplored. RESULTS: Mice were exposed to PS-NPs/COOH/NH2 at a dose of 5 mg/kg/day for nine weeks, either alone or in a T2DM model. The findings demonstrated that exposure to PS-NPs modified by different functional groups caused a notable rise in fasting blood glucose (FBG) levels, glucose intolerance, and insulin resistance in a mouse model of T2DM. Exposure to PS-NPs-NH2 alone can also lead the above effects to a certain degree. PS-NPs exposure could induce glycogen accumulation and hepatocellular edema, as well as injury to the pancreas. Comparing the effect of different functional groups or charges on T2DM, the PS-NPs-NH2 group exhibited the most significant FBG elevation, glycogen accumulation, and insulin resistance. The phosphorylation of AKT and FoxO1 was found to be inhibited by PS-NPs exposure. Treatment with SC79, the selective AKT activator was shown to effectively rescue this process and attenuate T2DM like lesions. CONCLUSIONS: Exposure to PS-NPs with different functional groups (charges) induced T2DM-like lesions. Amino-modified PS-NPs cause more serious T2DM-like lesions than pristine PS-NPs or carboxyl functionalized PS-NPs. The underlying mechanisms involved the inhibition of P-AKT/P-FoxO1. This study highlights the potential risk of NPs pollution on T2DM, and provides a new perspective for evaluating the impact of plastics aging.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Nanopartículas , Poliestirenos , Proteínas Proto-Oncogênicas c-akt , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Masculino , Poliestirenos/toxicidade , Poliestirenos/química , Nanopartículas/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Camundongos , Proteína Forkhead Box O1/metabolismo , Microplásticos/toxicidade , Fosforilação , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA