Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115868, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142590

RESUMO

Ochratoxin A (OTA) is a mycotoxin commonly found in several food commodities worldwide with potential nephrotoxic, hepatotoxic and carcinogenic effects. We previously showed for the first time that OTA treatment enhanced glycolysis in human gastric epithelium (GES-1) cells in vitro. Here, we found that OTA exposure activated inflammatory responses, evidenced by increasing of NF-κB signaling pathway-related protein (p-p65 and p-IκBα) expressions and elevating of inflammatory cytokine (IL-1ß and IL-6) mRNA expressions in GES-1 cells. To elucidate the role of glycolysis in inflammatory effects triggered by OTA, we pretreated GES-1 cells with glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) before OTA exposure. The result showed that 2-DG reduced the protein expressions of p-p65 and p-IκBα and alleviated the mRNA expressions of inflammatory cytokines in OTA-treated GES-1 cells. Furthermore, OTA activated the mTOR/HIF-1α pathway by increasing the protein expressions of p-mTOR, p-eIF4E and HIF-1α, and inhibition of mTOR with rapamycin or silencing HIF-1α with siRNA significantly attenuated OTA-enhanced glycolysis by reducing glycolysis related genes and thereby decreasing inflammatory effects of GES-1 cells. These results demonstrate that OTA activates inflammatory responses in GES-1 cells and this is controlled by mTOR/HIF-1α pathway-mediated glycolysis enhancement. Our findings provide a novel mechanistic view into OTA-induced gastric cytotoxicity.


Assuntos
Ocratoxinas , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Inibidor de NF-kappaB alfa , Linhagem Celular , Serina-Treonina Quinases TOR/genética , Glicólise , RNA Mensageiro , Epitélio
2.
Gastric Cancer ; 25(3): 490-502, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34993738

RESUMO

BACKGROUND: A dynamic molecular interaction between cancer and the surrounding normal cells is mediated through exosomes. We investigated whether exosomes derived from gastric cancer cells affected the fate of the surrounding gastric epithelial cells. METHODS: We analyzed the cell viability and immortalization of primary normal stomach epithelial cells (PNSECs) after treatment with exosomes derived from AGS gastric cancer cells and/or H. pylori CagA. Cell proliferation and apoptosis were analyzed by BrdU incorporation, flow-cytometry, and colony formation assays. We examined telomere length, expression and activity of telomerase, and expression of telomere-related genes in PNSECs treated with cancer exosomes, and in 60 gastric cancer and corresponding mucosal tissues. The differentially expressed genes and transcriptional regulation of telomere-related genes were verified using real-time qPCR and ChIP analyses, respectively. RESULTS: Gastric cancer exosomes increased cell viability and the population-doubling levels but inhibited the cellular senescence and apoptosis of PNSECs. The internalization of cancer exosomes in PNSECs dramatically increased the number of surviving colonies and induced a multilayer growth and invasion into the scaffold. Treatment of PNSECs with cancer exosomes markedly increased the expression and activity of telomerase and the T/S ratio and regulated the expression of the telomere-associated genes, heat-shock genes, and hedgehog genes. Compared to gastric mucosae, gastric cancer showed increased hTERT expression, which was positively correlated with telomere length. Interestingly, seven (46.7%) of 15 non-cancerous gastric mucosae demonstrated strong telomerase activity. CONCLUSION: These results suggest that gastric cancer exosomes induced the transformation and field cancerization of the surrounding non-cancerous gastric epithelial cells.


Assuntos
Exossomos , Neoplasias Gástricas , Telomerase , Células Epiteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Telomerase/genética , Telomerase/metabolismo
3.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071419

RESUMO

Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interleucina-33/farmacologia , Proteínas Recombinantes/farmacologia , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-33/genética , Masculino , Pessoa de Meia-Idade , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
4.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G931-G945, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174134

RESUMO

Helicobacter pylori infection always induces gastritis, which may progress to ulcer disease or cancer. The mechanisms underlying mucosal injury by the bacteria are incompletely understood. Here, we identify a novel pathway for H. pylori-induced gastric injury, the impairment of maturation of the essential transport enzyme and cell adhesion molecule, Na-K-ATPase. Na-K-ATPase comprises α- and ß-subunits that assemble in the endoplasmic reticulum (ER) before trafficking to the plasma membrane. Attachment of H. pylori to gastric epithelial cells increased Na-K-ATPase ubiquitylation, decreased its surface and total levels, and impaired ion balance. H. pylori did not alter degradation of plasmalemma-resident Na-K-ATPase subunits or their mRNA levels. Infection decreased association of α- and ß-subunits with ER chaperone BiP and impaired assembly of α/ß-heterodimers, as was revealed by quantitative mass spectrometry and immunoblotting of immunoprecipitated complexes. The total level of BiP was not altered, and the decrease in interaction with BiP was not observed for other BiP client proteins. The H. pylori-induced decrease in Na-K-ATPase was prevented by BiP overexpression, stopping protein synthesis, or inhibiting proteasomal, but not lysosomal, protein degradation. The results indicate that H. pylori impairs chaperone-assisted maturation of newly made Na-K-ATPase subunits in the ER independently of a generalized ER stress and induces their ubiquitylation and proteasomal degradation. The decrease in Na-K-ATPase levels is also seen in vivo in the stomachs of gerbils and chronically infected children. Further understanding of H. pylori-induced Na-K-ATPase degradation will provide insights for protection against advanced disease.NEW & NOTEWORTHY This work provides evidence that Helicobacter pylori decreases levels of Na-K-ATPase, a vital transport enzyme, in gastric epithelia, both in acutely infected cultured cells and in chronically infected patients and animals. The bacteria interfere with BiP-assisted folding of newly-made Na-K-ATPase subunits in the endoplasmic reticulum, accelerating their ubiquitylation and proteasomal degradation and decreasing efficiency of the assembly of native enzyme. Decreased Na-K-ATPase expression contributes to H. pylori-induced gastric injury.


Assuntos
Retículo Endoplasmático/enzimologia , Células Epiteliais/enzimologia , Mucosa Gástrica/enzimologia , Gastrite/enzimologia , Proteínas de Choque Térmico/metabolismo , Infecções por Helicobacter/enzimologia , Helicobacter pylori/patogenicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Cultivadas , Retículo Endoplasmático/microbiologia , Chaperona BiP do Retículo Endoplasmático , Estabilidade Enzimática , Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Gastrite/genética , Gastrite/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteólise , ATPase Trocadora de Sódio-Potássio/genética , Ubiquitinação
5.
Int J Mol Sci ; 20(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405107

RESUMO

Probiotics are used in the management of some gastrointestinal diseases. However, little is known about their effects on normal gastric epithelial biology. The aim of this study was to explore how the probiotic mixture VSL#3 affects gastric cell lineages in mice with a special focus on protective and aggressive factors. Weight-matching littermate male mice (n = 14) were divided into treated and control pairs. The treated mice received VSL#3 (5 mg/day/mouse) by gastric gavage for 10 days. Control mice received only the vehicle. Food consumption and bodyweight were monitored. All mice were injected intraperitoneally with bromodeoxyuridine (120 mg/Kg bodyweight) two hours before sacrificed to label S-phase cells. Stomach tissues were processed for lectin- and immunohistochemical examination. ImageJ software was used to quantify immunolabeled gastric epithelial cells. Real-time quantitative polymerase chain reaction was used to provide relative changes in expression of gastric cell lineages specific genes. Results revealed that treated mice acquired (i) increased production of mucus, trefoil factor (TFF) 1 and TFF2, (ii) decreased production of pepsinogen, and (iii) increased ghrelin-secreting cells. No significant changes were observed in bodyweight, food consumption, cell proliferation, or parietal cells. Therefore, VSL#3 administration amplifies specific cell types specialized in the protection of the gastric epithelium.


Assuntos
Mucosa Gástrica/metabolismo , Pepsinogênio A/genética , Probióticos/farmacologia , Fatores Trefoil/genética , Animais , Regulação para Baixo , Mucosa Gástrica/citologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Regulação para Cima
6.
AAPS PharmSciTech ; 20(7): 277, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31396788

RESUMO

The pentacyclic triterpenoid compounds in Centella asiatica extract, mainly consisting of asiaticoside (AS), asiatic acid (AA), madecassoside (MS), and madecassic acid (MA), possess wound healing and anti-ulcer properties, but their low aqueous solubility and dissolution rate are disadvantageous for oral administration. In this study, pentacyclic triterpene-rich centella extract (PRE) was combined with Eudragit® EPO as a hydrophilic polymer using solvent evaporation to produce a solid dispersion (PRE-ESD). The optimum PRE/Eudragit ratio of 1:2 enhanced the solubility and dissolution of glycosides (AS > 3.5 folds, MS > 2 folds) and aglycones (AA > 65 folds and MA > 56 folds) in 0.1 N hydrochloric acid (pH 1.2). DSC, XRD, and FT-IR analysis showed that the four pentacyclic triterpenes in PRE existed in the amorphous state in the solid dispersion. Moreover, almost 100% of the compounds were released from the solid dispersion within 2 h. The effects of PRE-ESD on cell proliferation and wound healing in vitro were investigated in human gastric epithelial cell lines (AGS cells). Exposure to PRE-ESD (equivalent to PRE concentration of 10 µg/mL) promoted cell proliferation and enhanced 'wound closure' in the scratch assay of wound healing by 82% compared with non-treated groups. Unformulated MA and AA aglycones did not exhibit a wound healing effect. Moreover, PRE-ESD was found to accelerate wound closure compared with either AS or MS, indicating that the wound healing properties of PRE-ESD are conferred by the active compounds AS and MS that are presented in PRE.


Assuntos
Centella/química , Mucosa Gástrica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Cicatrização/efeitos dos fármacos , Mucosa Gástrica/patologia , Humanos
7.
Int J Mol Sci ; 19(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642375

RESUMO

The ability to analyze individual epithelial cells in the gastric mucosa would provide important insight into gastric disease, including chronic gastritis and progression to gastric cancer. However, the successful isolation of viable gastric epithelial cells (parietal cells, neck cells, chief cells, and foveolar cells) from gastric glands has been limited due to difficulties in tissue processing. Furthermore, analysis and interpretation of gastric epithelial cell flow cytometry data has been difficult due to the varying sizes and light scatter properties of the different epithelial cells, high levels of autofluorescence, and poor cell viability. These studies were designed to develop a reliable method for isolating viable single cells from the corpus of stomachs and to optimize analyses examining epithelial cells from healthy and diseased stomach tissue by flow cytometry. We performed a two stage enzymatic digestion in which collagenase released individual gastric glands from the stromal tissue of the corpus, followed by a Dispase II digestion that dispersed these glands into greater than 1 × 106 viable single cells per gastric corpus. Single cell suspensions were comprised of all major cell lineages found in the normal gastric glands. A method describing light scatter, size exclusion, doublet discrimination, viability staining, and fluorescently-conjugated antibodies and lectins was used to analyze individual epithelial cells and immune cells. This technique was capable of identifying parietal cells and revealed that gastric epithelial cells in the chronically inflamed mucosa significantly upregulated major histocompatibility complexes (MHC) I and II but not CD80 or CD86, which are costimulatory molecules involved in T cell activation. These studies describe a method for isolating viable single cells and a detailed description of flow cytometric analysis of cells from healthy and diseased stomachs. These studies begin to identify effects of chronic inflammation on individual gastric epithelial cells, a critical consideration for the study of gastric cancer.


Assuntos
Citometria de Fluxo/métodos , Mucosa Gástrica/citologia , Animais , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Mucosa Gástrica/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
8.
Helicobacter ; 22(2)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27687509

RESUMO

BACKGROUND: Helicobacter pylori (HP) infection induces methylation silencing of specific genes in gastric epithelium. Various stimuli activate the nonselective cation channel TRPV4, which is expressed in gastric epithelium where it detects mechanical stimuli and promotes ATP release. As CpG islands in TRPV4 are methylated in HP-infected gastric epithelium, we evaluated HP infection-dependent changes in TRPV4 expression in gastric epithelium. MATERIALS AND METHODS: Human gastric biopsy samples, a human gastric cancer cell line (AGS), and a normal gastric epithelial cell line (GES-1) were used to detect TRPV4 mRNA and protein expression by RT-PCR and Western blotting, respectively. Ca2+ imaging was used to evaluate TRPV4 ion channel activity. TRPV4 methylation status was assessed by methylation-specific PCR (MSP). ATP release was measured by a luciferin-luciferase assay. RESULTS: TRPV4 mRNA and protein were detected in human gastric biopsy samples and in GES-1 cells. MSP and demethylation assays showed TRPV4 methylation silencing in AGS cells. HP coculture directly induced methylation silencing of TRPV4 in GES-1 cells. In human samples, HP infection was associated with TRPV4 methylation silencing that recovered after HP eradication in a time-dependent manner. CONCLUSION: HP infection-dependent DNA methylation suppressed TRPV4 expression in human gastric epithelia, suggesting that TRPV4 methylation may be involved in HP-associated dyspepsia.


Assuntos
Epitélio/microbiologia , Epitélio/fisiologia , Inativação Gênica , Helicobacter pylori/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Canais de Cátion TRPV/biossíntese , Trifosfato de Adenosina/análise , Adulto , Idoso , Biópsia , Western Blotting , Cálcio/análise , Linhagem Celular , Metilação de DNA , Feminino , Mucosa Gástrica/microbiologia , Mucosa Gástrica/fisiologia , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Canais de Cátion TRPV/genética
9.
Gastroenterology ; 148(1): 126-136.e6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307862

RESUMO

BACKGROUND & AIMS: We previously established long-term, 3-dimensional culture of organoids from mouse tissues (intestine, stomach, pancreas, and liver) and human intestine and pancreas. Here we describe conditions required for long-term 3-dimensional culture of human gastric stem cells. The technology can be applied to study the epithelial response to infection with Helicobacter pylori. METHODS: We generated organoids from surgical samples of human gastric corpus. Culture conditions were developed based on those for the mouse gastric and human intestinal systems. We used microinjection to infect the organoids with H pylori. Epithelial responses were measured using microarray and quantitative polymerase chain reaction analyses. RESULTS: Human gastric cells were expanded indefinitely in 3-dimensional cultures. We cultured cells from healthy gastric tissues, single-sorted stem cells, or tumor tissues. Organoids maintained many characteristics of their respective tissues based on their histology, expression of markers, and euploidy. Organoids from healthy tissue expressed markers of 4 lineages of the stomach and self-organized into gland and pit domains. They could be directed to specifically express either lineages of the gastric gland, or the gastric pit, by addition of nicotinamide and withdrawal of WNT. Although gastric pit lineages had only marginal reactions to bacterial infection, gastric gland lineages mounted a strong inflammatory response. CONCLUSIONS: We developed a system to culture human gastric organoids. This system can be used to study H pylori infection and other gastric pathologies.


Assuntos
Células Epiteliais/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Células-Tronco/microbiologia , Estômago/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Linhagem da Célula , Proliferação de Células , Separação Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Niacinamida/farmacologia , Organoides , Fenótipo , Ploidias , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Estômago/efeitos dos fármacos , Estômago/imunologia , Estômago/patologia , Fatores de Tempo , Proteínas Wnt/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 309(2): G78-86, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977510

RESUMO

The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling.


Assuntos
Movimento Celular , Células Epiteliais/enzimologia , Mucosa Gástrica/enzimologia , Gastrinas/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Animais , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Gastrinas/sangue , Gastrinas/genética , Humanos , Metaloproteinase 1 da Matriz/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Inibidores da Bomba de Prótons/farmacologia , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Transfecção , Regulação para Cima
11.
Am J Physiol Gastrointest Liver Physiol ; 309(12): G955-64, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26514774

RESUMO

Injury and inflammation in the gastric epithelium can cause disruption of the pathways that guide the differentiation of cell lineages, which in turn can cause persistent alterations in differentiation patterns, known as metaplasia. Metaplasia that occurs in the stomach is associated with increased risk for cancer. Methods for isolating distinct gastric epithelial cell populations would facilitate dissection of the molecular and cellular pathways that guide normal and metaplastic differentiation. Here, we identify alanyl aminopeptidase (CD13) as a specific surface marker of zymogenic chief cells (ZCs) in the gastric epithelium. We show that 1) among gastric epithelial cells alanyl aminopeptidase expression is confined to mature ZCs, and 2) its expression is lost en route to metaplasia in both mouse and human stomachs. With this new marker coupled with new techniques that we introduce for dissociating gastric epithelial cells and overcoming their constitutive autofluorescence, we are able to reliably isolate enriched populations of ZCs for both molecular analysis and for the establishment of ZC-derived ex vivo gastroid cultures.


Assuntos
Antígenos CD13/metabolismo , Separação Celular/métodos , Celulas Principais Gástricas/enzimologia , Estômago/enzimologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Celulas Principais Gástricas/patologia , Feminino , Humanos , Masculino , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Estômago/patologia
12.
Gastroenterology ; 147(3): 655-666.e9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24859162

RESUMO

BACKGROUND & AIMS: Loss of expression of Sonic Hedgehog (Shh) from parietal cells results in hypergastrinemia in mice, accompanied by increased expression of Indian Hedgehog (Ihh) and hyperproliferation of surface mucous cells. We investigated whether hypergastrinemia induces gastric epithelial proliferation by activating Ihh signaling in mice. METHODS: We studied mice with parietal cell-specific deletion of Shh (PC-Shh(KO)) and hypergastrinemia, crossed with gastrin-deficient (GKO) mice (PC-Shh(KO)/GKO). When mice were 3-4 months old, gastric tissues were collected and analyzed by histology, for incorporation of bromodeoxyuridine, and for expression of the surface mucous cell marker Ulex europaeus. PC-Shh(KO)/GKO mice were given gastrin infusions for 7 days; gastric surface epithelium was collected and expression of Ihh was quantified by laser capture microdissection followed by quantitative reverse transcriptase polymerase chain reaction. Mouse stomach-derived organoids were incubated with or without inhibitors of WNT (DKK1) or Smoothened (vismodegib) and then cocultured with immortalized stomach mesenchymal cells, to assess proliferative responses to gastrin. RESULTS: Gastric tissues from PC-Shh(KO)/GKO mice with hypergastrinemia had an expanded surface pit epithelium, indicated by a significant increase in numbers of bromodeoxyuridine- and Ulex europaeus-positive cells, but there was no evidence for hyperproliferation. Gastrin infusion of PC PC-Shh(KO)/GKO mice increased expression of Ihh and proliferation within the surface epithelium compared with mice given infusions of saline. In gastric organoids cocultured with immortalized stomach mesenchymal cells, antagonists of WNT and Smoothened inhibited gastrin-induced proliferation and WNT activity. Activity of WNT in media collected from immortalized stomach mesenchymal cells correlated with increased expression of glioma-associated oncogene homolog 1, and was inhibited by DKK1 or vismodegib. CONCLUSIONS: Ihh signaling mediates gastrin-induced proliferation of epithelial cells in stomachs of adult mice.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Gastrinas/metabolismo , Proteínas Hedgehog/metabolismo , Gastropatias/metabolismo , Animais , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/patologia , Mucosa Gástrica/patologia , Gastrinas/administração & dosagem , Gastrinas/deficiência , Gastrinas/genética , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Infusões Parenterais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Gastropatias/genética , Gastropatias/patologia , Fatores de Tempo , Via de Sinalização Wnt , Proteína GLI1 em Dedos de Zinco
13.
Am J Physiol Gastrointest Liver Physiol ; 305(10): G731-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23989011

RESUMO

Gastric infection by Helicobacter pylori is the most common cause of ulcer disease and gastric cancer. The mechanism of progression from gastritis and inflammation to ulcers and cancer in a fraction of those infected is not definitively known. Significant acidity is unique to the gastric environment and is required for ulcer development. The interplay between gastric acidity and H. pylori pathogenesis is important in progression to advanced disease. The aim of this study was to characterize the impact of acid on gastric epithelial integrity and cytokine release and how H. pylori infection alters these responses. Human gastric epithelial (HGE-20) cells were grown on porous inserts, and survival, barrier function, and cytokine release were studied at various apical pH levels in the presence and absence of H. pylori. With apical acidity, gastric epithelial cells demonstrate increased barrier function, as evidenced by increased transepithelial electrical resistance (TEER) and decreased paracellular permeability. This effect is reduced in the presence of wild-type, but not urease knockout, H. pylori. The epithelial inflammatory response is also modulated by acidity and H. pylori infection. Without H. pylori, epithelial IL-8 release decreases in acid, while IL-6 release increases. In the presence of H. pylori, acidic pH diminishes the magnitude of the previously reported increase in IL-8 and IL-6 release. H. pylori interferes with the gastric epithelial response to acid, contributing to altered barrier function and inflammatory response. H. pylori diminishes acid-induced tightening of cell junctions in a urease-dependent manner, suggesting that local pH elevation promotes barrier compromise and progression to mucosal damage.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Helicobacter pylori/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/química , Impedância Elétrica , Fenômenos Eletrofisiológicos , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Humanos , Concentração de Íons de Hidrogênio
14.
J Pers Med ; 13(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37763093

RESUMO

Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.

15.
Trends Cancer ; 9(8): 679-690, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230895

RESUMO

Helicobacter pylori is a human microbial pathogen that colonizes the gastric epithelium and causes type B gastritis with varying degrees of active inflammatory infiltrates. The underlying chronic inflammation induced by H. pylori and other environmental factors may promote the development of neoplasms and adenocarcinoma of the stomach. Dysregulation of various cellular processes in the gastric epithelium and in different cells of the microenvironment is a hallmark of H. pylori infection. We address the conundrum of H. pylori-associated apoptosis and review distinct mechanisms induced in host cells that either promote or suppress apoptosis in gastric epithelial cells, often simultaneously. We highlight key processes in the microenvironment that contribute to apoptosis and gastric carcinogenesis.


Assuntos
Gastrite , Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/etiologia , Mucosa Gástrica/patologia , Apoptose , Microambiente Tumoral
16.
Int J Biol Sci ; 18(11): 4329-4340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864961

RESUMO

Previous studies have demonstrated the in vitro oncogenic role of protein arginine methyltransferase 5 (PRMT5) in gastric cancer cell lines. The in vivo function of PRMT5 in gastric tumorigenesis, however, is still unexplored. Here, we showed that Prmt5 deletion in mouse gastric epithelium resulted in spontaneous tumorigenesis in gastric antrum. All Prmt5-deficient mice displayed intestinal-type gastric cancer within 4 months of age. Of note, 20% (2/10) of Prmt5 mutants finally developed into invasive gastric cancer by 8 months of age. Gastric cancer caused by PRMT5 loss exhibited the increase in Lgr5+ stem cells, which are proposed to contribute to both the gastric tumorigenesis and progression in mouse models. Consistent with the notion that Lgr5 is the target of Wnt/ß-catenin signaling, whose activation is the most predominant driver for gastric tumorigenesis, Prmt5 mutant gastric cancer showed the activation of Wnt/ß-Catenin signaling. Furthermore, in human gastric cancer samples, PRMT5 deletion and downregulation were frequently observed and associated with the poor prognosis. We propose that as opposed to the tumor-promoting role of PRMT5 well-established in the progression of various cancer types, PRMT5 functions as a tumor suppressor in vivo, at least during gastric tumor formation.


Assuntos
Proteína-Arginina N-Metiltransferases , Neoplasias Gástricas , Via de Sinalização Wnt , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias Gástricas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
World J Gastrointest Oncol ; 14(2): 396-412, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35317321

RESUMO

The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.

18.
Saudi J Biol Sci ; 29(4): 2187-2198, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531231

RESUMO

Ciprofloxacin (CPX), is a fluoroquinolone antibiotic used to treat a number of gram-negative and gram-positive bacterial infections. Ciprofloxacin can cause severe side effects, ranging from tendon problems, nerve damage, to serious mood or behavior changes. The purpose of this study was to investigate how ciprofloxacin affects gastric cell lines in rats with a distinctive emphasis on physiological, histopathological, and bacteriological changes. Male albino rats (n = 21) were distributed into three groups; control, CPX, and CPX-withdrawal groups. The treated rats were given CPX tablets (12.5 mg/kg) dissolved in carboxymethyl cellulose (CMC) 0.5% orally once daily via gavage for sixty consecutive days. Control rats received only the vehicle. The withdrawal group was treated for 60 days and the drug was withdrawn for another sixty days. After completion of the experiment, all rats were sacrificed and gastric tissues were treated for light, immunohistochemical, and scanning electron microscopic examination. Image J software was used to measure immune-labeled gastric epithelial cells. Blood samples were also collected for H. Pylori immunoglobulins IgM, IgA, and IgG. Results showed that treated rats acquired significantly strongly positive tumor necrosis factor (TNFα) and significant reduction of serum level of H. pylori IgM, IgA, and IgG in all the study groups. It could be concluded that prolonged oral CPX administration to albino rats changes the gastric mucosal architecture and bacteriology.

19.
Nutrients ; 14(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014840

RESUMO

Junctional epithelia are common sites for pathological transformations. In mice, the stratified epithelium of the forestomach joins the simple glandular epithelium of the cardia at the limiting ridge. We previously demonstrated the expression of vitamin A receptors in the gastric stem/progenitor cells and their progeny and found that excess retinoic acid enhances cellular dynamics of gastric epithelium. This study examines how deficiency of vitamin A would alter gastric epithelial stem cell lineages. Three-week-old mice of both genders were weaned and fed with a vitamin A deficient (VAD) diet for 4 or 8 months. Sex- and weight-matched littermate mice received a standard (control) diet. To label S-phase cells, all mice received a single intraperitoneal injection of 5-bromo-2-deoxyuridine before being euthanized. Stomach tissues were processed for microscopic examination and protein analysis to investigate stem cell lineages using different stains, lectins, or antibodies. The Student's t-test was used to compare quantified data showing differences between control and VAD groups. Eight-month-vitamin-A deficiency caused enlarged forestomach and overgrowth of the squamocolumnar junction with metaplastic and dysplastic cardiac glands, formation of intramucosal cysts, loss of surface mucosal integrity, increased amount of luminal surface mucus, and upregulation of trefoil factor 1 and H+,K+-ATPase. These changes were associated with decreased cell proliferation and upregulation of p63. In conclusion, vitamin A is necessary for maintaining gastric epithelial integrity and its deficiency predisposes the mouse stomach to precancerous lesions.


Assuntos
Estômago , Vitamina A , Animais , Linhagem da Célula , Epitélio/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Humanos , Masculino , Camundongos , Vitamina A/metabolismo
20.
Front Cell Infect Microbiol ; 12: 976017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034712

RESUMO

Gastrointestinal nematodes are a diverse class of pathogens that colonise a quarter of the world's human population and nearly all grazing livestock. These macroparasites establish, and some migrate, within host gastrointestinal niches during their life cycles and release molecules that condition the host mucosa to enable chronic infections. Understanding how helminths do this, and defining the molecules and mechanisms involved in host modulation, holds promise for novel strategies of anthelmintics and vaccines, as well as new knowledge of immune regulation and tissue repair. Yet the size and complexity of these multicellular parasites, coupled with the reliance on hosts to maintain their life cycles, present obstacles to interrogate how they interact with the gastric and intestinal epithelium, stroma and immune cells during infection, and also to develop protocols to genetically modify these parasites. Gastrointestinal organoids have transformed research on gastric and gut physiology during homeostasis and disease, including investigations on host-pathogen interactions with viruses, bacteria, protozoa and more recently, parasitic nematodes. Here we outline applications and important considerations for the best use of organoids to study gastrointestinal nematode development and interactions with their hosts. The careful use of different organoid culture configurations in order to achieve a closer replication of the in vivo infection context will lead not only to new knowledge on gastrointestinal nematode infection biology, but also towards the replication of their life cycles in vitro, and the development of valuable experimental tools such as genetically modified parasites.


Assuntos
Gastroenteropatias , Nematoides , Infecções por Nematoides , Parasitos , Animais , Interações Hospedeiro-Parasita , Humanos , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA