Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 691, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030468

RESUMO

BACKGROUND: Kentucky bluegrass (Poa pratensis L.) panicle development is a coordinated process of cell proliferation and differentiation with distinctive phases and architectural changes that are pivotal to determine seed yield. Cytokinin (CK) is a key factor in determining seed yield that might underpin the second "Green Revolution". However, whether there is a difference between endogenous CK content and seed yields of Kentucky bluegrass, and how CK-related genes are expressed to affect enzyme regulation and downstream seed yield in Kentucky bluegrass remains enigmatic. RESULTS: In order to establish a potential link between CK regulation and seed yield, we dissected and characterized the Kentucky bluegrass young panicle, and determined the changes in nutrients, 6 types of endogenous CKs, and 16 genes involved in biosynthesis, activation, inactivation, re-activation and degradation of CKs during young panicle differentiation of Kentucky bluegrass. We found that high seed yield material had more meristems compared to low seed yield material. Additionally, it was found that seed-setting rate (SSR) and lipase activity at the stage of spikelet and floret primordium differentiation (S3), as well as 1000-grain weight (TGW) and zeatin-riboside (ZR) content at the stages of first bract primordium differentiation (S1) and branch primordium differentiation (S2) showed a significantly positive correlation in the two materials. And zeatin, ZR, dihydrozeatin riboside, isopentenyl adenosine and isopentenyl adenosine riboside contents were higher in seed high yield material than those in seed low yield material at S3 stage. Furthermore, the expressions of PpITP3, PpITP5, PpITP8 and PpLOG1 were positively correlated with seed yield, while the expressions of PpCKX2, PpCKX5 and PpCKX7 were negatively correlated with seed yield in Kentucky bluegrass. CONCLUSIONS: Overall, our study established a relationship between CK and seed yield in Kentucky bluegrass. Perhaps we can increase SSR and TGW by increasing lipase activity and ZR content. Of course, using modern gene editing techniques to manipulate CK related genes such as PpITP3/5/8, PpLOG1 and PpCKX2/5/7, will be a more direct and effective method in Kentucky bluegrass, which requires further trial validation.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Poa , Sementes , Citocininas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Poa/genética , Poa/crescimento & desenvolvimento , Poa/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Genes de Plantas
2.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872078

RESUMO

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Assuntos
Acetatos , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Panax , Filogenia , Proteínas de Plantas , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Panax/genética , Panax/metabolismo , Panax/efeitos dos fármacos , Acetatos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Ginsenosídeos
3.
Stat Appl Genet Mol Biol ; 22(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082815

RESUMO

It is often of research interest to identify genes that satisfy a particular expression pattern across different conditions such as tissues, genotypes, etc. One common practice is to perform differential expression analysis for each condition separately and then take the intersection of differentially expressed (DE) genes or non-DE genes under each condition to obtain genes that satisfy a particular pattern. Such a method can lead to many false positives, especially when the desired gene expression pattern involves equivalent expression under one condition. In this paper, we apply a Bayesian partition model to identify genes of all desired patterns while simultaneously controlling their false discovery rates (FDRs). Our simulation studies show that the common practice fails to control group specific FDRs for patterns involving equivalent expression while the proposed Bayesian method simultaneously controls group specific FDRs at all settings studied. In addition, the proposed method is more powerful when the FDR of the common practice is under control for identifying patterns only involving DE genes. Our simulation studies also show that it is an inherently more challenging problem to identify patterns involving equivalent expression than patterns only involving differential expression. Therefore, larger sample sizes are required to obtain the same target power to identify the former types of patterns than the latter types of patterns.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Perfilação da Expressão Gênica/métodos , Teorema de Bayes , Simulação por Computador , Sequenciamento do Exoma
4.
BMC Womens Health ; 24(1): 394, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977982

RESUMO

BACKGROUND: Neuropsychiatric disorders and cervical cancer exert substantial influences on women's health. Furthermore, neuropsychiatric disorders frequently manifest as common symptoms in cancer patients, potentially increasing the risk of malignant neoplasms. This study aimed to identify neuropsychiatric disorders that are genetically and causally related to cervical cancer and to investigate the molecular mechanisms underlying these associations. METHODS: GWAS data related to nine neuropsychiatric disorders, namely, schizophrenia, bipolar disorder, autism spectrum disorder, Parkinson's disease, anxiety, Alzheimer's disease, mood disorders, depression, and alcohol dependence, were obtained to calculate heritability (h2) and genetic correlation (rg) with cervical cancer using linkage disequilibrium score regression (LDSC). Mendelian randomization (MR) analysis of the two cohorts was employed to assess the causal effects. Shared gene expression pattern analysis was subsequently conducted to investigate the molecular mechanism underlying these significant associations. RESULTS: Anxiety, mood disorders, depression, and alcohol dependence were genetically correlated with cervical cancer (all adjusted P < 0.05). Only depression was causally related to cervical cancer in both the discovery (ORIVW: 1.41, PIVW = 0.02) and replication cohorts (ORIVW: 1.80, PIVW = 0.03) in the MR analysis. Gene expression pattern analysis revealed that 270 genes related to depression and cervical cancer, including tumour necrosis factor (TNF), were significantly upregulated in cervical cancer patients, while vascular endothelial growth factor A (VEGFA), transcription factor AP-1 (JUN), and insulin-like growth factor I (IGF-I) were associated with prognosis in cervical cancer patients (all P < 0.05). These overlapping genes implicated the involvement of multiple biological mechanisms, such as neuron death, the PI3K-Akt signalling pathway, and human papillomavirus infection. CONCLUSIONS: Genetic, causal and molecular evidence indicates that depression increases the risk of cervical cancer. The TNF, VEGFA, JUN, and IGF-1 genes and the neuron death, PI3K-Akt, and human papillomavirus infection signalling pathways may possibly explain this association.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Análise da Randomização Mendeliana/métodos , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Predisposição Genética para Doença , Estudos de Coortes
5.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33834216

RESUMO

Reverse engineering mechanistic gene regulatory network (GRN) models with a specific dynamic spatial behavior is an inverse problem without analytical solutions in general. Instead, heuristic machine learning algorithms have been proposed to infer the structure and parameters of a system of equations able to recapitulate a given gene expression pattern. However, these algorithms are computationally intensive as they need to simulate millions of candidate models, which limits their applicability and requires high computational resources. Graphics processing unit (GPU) computing is an affordable alternative for accelerating large-scale scientific computation, yet no method is currently available to exploit GPU technology for the reverse engineering of mechanistic GRNs from spatial phenotypes. Here we present an efficient methodology to parallelize evolutionary algorithms using GPU computing for the inference of mechanistic GRNs that can develop a given gene expression pattern in a multicellular tissue area or cell culture. The proposed approach is based on multi-CPU threads running the lightweight crossover, mutation and selection operators and launching GPU kernels asynchronously. Kernels can run in parallel in a single or multiple GPUs and each kernel simulates and scores the error of a model using the thread parallelism of the GPU. We tested this methodology for the inference of spatiotemporal mechanistic gene regulatory networks (GRNs)-including topology and parameters-that can develop a given 2D gene expression pattern. The results show a 700-fold speedup with respect to a single CPU implementation. This approach can streamline the extraction of knowledge from biological and medical datasets and accelerate the automatic design of GRNs for synthetic biology applications.


Assuntos
Algoritmos , Biologia Computacional/métodos , Gráficos por Computador , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Modelos Genéticos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Software , Fatores de Tempo
6.
Fish Shellfish Immunol ; 133: 108555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669604

RESUMO

Sebastes schlegelii is a kind of fish with great economic values. Recently, with the continuous expansion of aquaculture scale and the continuous improvement of aquaculture density, outbreak of various diseases has caused huge economic losses to its aquaculture industry. Study of fish immune system can help to understand the mechanism of immune response to external pathogens and can promote the development of immune prevention and control methods. Immunoglobulins (Igs) are complex glycoproteins that appear to be unique to the vertebrates that can recognize a wide variety of pathogens and recruit immune cells and molecules to destroy pathogens, which are generated by a series of rearrangement and somatic mutations. We therefore studied the immunoglobulin genes of S. schlegelii in view of their important roles in resisting to external pathogen infections. In this study, the immunoglobulin heavy chain genes (sIgM, mIgM, sIgT, and mIgT) of S. schlegelii were successfully identified and cloned. Phylogenetic analysis showed that the IgM and IgT genes of S. schlegelii were clustered together with homologous genes of other species, indicating that they were highly conserved during the evolutionary process. Collinearity analysis showed that the immunoglobulin genes and their adjacent genes were aligned with zebrafish, Atlantic salmon and tilapia, which further confirmed the conserved immunoglobulin gene of teleost. Expression analysis of healthy tissues showed that the expression levels of sIgM, sIgT and mIgT were the highest in the skin, while mIgM was the highest in spleen. After different bacterial infection, IgM and IgT were significantly expressed in skin and gill, which may be because skin and gill are the first line of defense against the infection pathogens. Subcellular localization showed that the mIgT protein was expressed in both the cell membrane and cytoplasm. Meanwhile, recombinant protein of mIgT was obtained in vitro, which laid a foundation for subsequent protein function studies. These results provide a theoretical basis for understanding the immunity role of immunoglobulin in S. schlegelii.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Proteínas de Peixes , Filogenia , Peixe-Zebra , Imunoglobulinas/genética , Imunoglobulina M/genética
7.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762268

RESUMO

Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 MBF1 genes. The expansion of MBF1a and MBF1b subfamilies was attributed to whole-genome duplication (WGD), and the expansion of the MBF1c subfamily occurred through transposed duplication (TRD). Collinearity analysis within Solanaceae species revealed collinearity between members of the MBF1a and MBF1b subfamilies, whereas the MBF1c subfamily showed relative independence. The gene expression of SlER24 was induced by sodium chloride (NaCl), polyethylene glycol (PEG), ABA (abscisic acid), and ethrel treatments, with the highest expression observed under NaCl treatment. The overexpression of SlER24 significantly enhanced the salt tolerance of tomato, and the functional deficiency of SlER24 decreased the tolerance of tomato to salt stress. SlER24 enhanced antioxidant enzyme activity to reduce the accumulation of reactive oxygen species (ROS) and alleviated plasma membrane damage under salt stress. SlER24 upregulated the expression levels of salt stress-related genes to enhance salt tolerance in tomato. In conclusion, this study provides basic information for the study of the MBF1 family of Solanaceae under abiotic stress, as well as a reference for the study of other plants.


Assuntos
Proteínas de Plantas , Estresse Salino , Solanaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanaceae/genética , Solanaceae/fisiologia
8.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629106

RESUMO

The plant-specific RWP-RK transcription factor family plays a central role in the regulation of nitrogen response and gametophyte development. However, little information is available regarding the evolutionary relationships and characteristics of the RWP-RK family genes in cassava, an important tropical crop. Herein, 13 RWP-RK proteins identified in cassava were unevenly distributed across 9 of the 18 chromosomes (Chr), and these proteins were divided into two clusters based on their phylogenetic distance. The NLP subfamily contained seven cassava proteins including GAF, RWP-RK, and PB1 domains; the RKD subfamily contained six cassava proteins including the RWP-RK domain. Genes of the NLP subfamily had a longer sequence and more introns than the RKD subfamily. A large number of hormone- and stress-related cis-acting elements were found in the analysis of RWP-RK promoters. Real-time quantitative PCR revealed that all MeNLP1-7 and MeRKD1/3/5 genes responded to different abiotic stressors (water deficit, cold temperature, mannitol, polyethylene glycol, NaCl, and H2O2), hormonal treatments (abscisic acid and methyl jasmonate), and nitrogen starvation. MeNLP3/4/5/6/7 and MeRKD3/5, which can quickly and efficiently respond to different stresses, were found to be important candidate genes for further functional assays in cassava. The MeRKD5 and MeNLP6 proteins were localized to the cell nucleus in tobacco leaf. Five and one candidate proteins interacting with MeRKD5 and MeNLP6, respectively, were screened from the cassava nitrogen starvation library, including agamous-like mads-box protein AGL14, metallothionein 2, Zine finger FYVE domain containing protein, glyceraldehyde-3-phosphate dehydrogenase, E3 Ubiquitin-protein ligase HUWE1, and PPR repeat family protein. These results provided a solid basis to understand abiotic stress responses and signal transduction mediated by RWP-RK genes in cassava.


Assuntos
Manihot , Manihot/genética , Peróxido de Hidrogênio , Filogenia , Verduras , Biblioteca Gênica
9.
BMC Genomics ; 23(1): 503, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831784

RESUMO

BACKGROUND: The filamentous temperature-sensitive H protease (ftsH) gene family plays an important role in plant growth and development. FtsH proteins belong to the AAA protease family. Studies have shown that it is a key gene for plant chloroplast development and photosynthesis regulation. In addition, the ftsH gene is also involved in plant response to stress. At present, the research and analysis of the ftsH gene family are conducted in microorganisms such as Escherichia coli and Oenococcus and various plants such as Arabidopsis, pear, rice, and corn. However, analysis reports on ftsH genes from tobacco (Nicotiana tabacum L.), an important model plant, are still lacking. Since ftsH genes regulate plant growth and development, it has become necessary to systematically study this gene in an economically important plant like tobacco. RESULTS: This is the first study to analyze the ftsH gene from Nicotiana tabacum L. K326 (NtftsH). We identified 20 ftsH genes from the whole genome sequence, renamed them according to their chromosomal locations, and divided them into eight subfamilies. These 20 NtftsH genes were unevenly distributed across the 24 chromosomes. We found four pairs of fragment duplications. We further investigated the collinearity between these genes and related genes in five other species. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis identified differential expression patterns of NtftsH in different tissues and under various abiotic stress conditions. CONCLUSIONS: This study provides a comprehensive analysis of the NtftsH gene family. The exon-intron structure and motif composition are highly similar in NtftsH genes that belong to the same evolutionary tree branch. Homology analysis and phylogenetic comparison of ftsH genes from several different plants provide valuable clues for studying the evolutionary characteristics of NtftsH genes. The NtftsH genes play important roles in plant growth and development, revealed by their expression levels in different tissues as well as under different stress conditions. Gene expression and phylogenetic analyses will provide the basis for the functional analysis of NtftsH genes. These results provide a valuable resource for a better understanding of the biological role of the ftsH genes in the tobacco plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Metaloendopeptidases/genética , Família Multigênica , Peptídeo Hidrolases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Temperatura , Nicotiana/metabolismo
10.
BMC Genomics ; 23(1): 318, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448973

RESUMO

BACKGROUND: The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS: In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS: In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.


Assuntos
Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo
11.
BMC Genomics ; 23(1): 702, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224518

RESUMO

BACKGROUND: Cellular events during meiosis can differ between inbred lines in maize. Substantial differences in the average numbers of chiasmata and double-strand breaks (DSBs) per meiotic cell have been documented among diverse inbred lines of maize: CML228, a tropical maize inbred line, B73 and Mo17, temperate maize lines. To determine if gene expression might explain these observed differences, an RNA-Seq experiment was performed on CML228 male meiocytes which was compared to B73 and Mo17 male meiocytes, where plants were grown in the same controlled environment. RESULTS: We found that a few DSB-repair/meiotic genes which promote class I crossovers (COs) and the Zyp1 gene which limits newly formed class I COs were up-regulated, whereas Mus81 homolog 2 which promotes class II COs was down-regulated in CML228. Although we did not find enriched gene ontology (GO) categories directly related to meiosis, we found that GO categories in membrane, localization, proteolysis, energy processes were up-regulated in CML228, while chromatin remodeling, epigenetic regulation, and cell cycle related processes including meiosis related cell cycle processes were down-regulated in CML228. The degree of similarity in expression patterns between the three maize lines reflect their genetic relatedness: B73 and Mo17 had similar meiotic expressions and CML228 had a more distinct expression profile. CONCLUSIONS: We found that meiotic related genes were mostly conserved among the three maize inbreds except for a few DSB-repair/meiotic genes. The findings that the molecular players in limiting class I CO formation (once CO assurance is achieved) were up-regulated and those involved in promoting class II CO formation were down-regulated in CML228 agree with the lower chiasmata number observed in CML228 previously. In addition, epigenetics such as chromatin remodeling and histone modification might play a role. Transport and energy-related processes was up-regulated and Cyclin13 was down-regulated in CML228. The direction of gene expression of these processes agree with that previously found in meiotic tissues compared with vegetative tissues. In summary, we used different natural maize inbred lines from different climatic conditions and have shown their differences in expression landscape in male meiocytes.


Assuntos
Quebras de DNA de Cadeia Dupla , Zea mays , Epigênese Genética , Meiose/genética , Recombinação Genética , Transcriptoma , Zea mays/metabolismo
12.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144681

RESUMO

Artemisiae argyi Folium is a traditional herbal medicine used for moxibustion heat therapy in China. The volatile oils in A.argyi leaves are closely related to its medicinal value. Records suggest that the levels of these terpenoids components within the leaves vary as a function of harvest time, with June being the optimal time for A. argyi harvesting, owing to the high levels of active ingredients during this month. However, the molecular mechanisms governing terpenoid biosynthesis and the time-dependent changes in this activity remain unclear. In this study, GC-MS analysis revealed that volatile oil levels varied across four different harvest months (April, May, June, and July) in A. argyi leaves, and the primarily terpenoids components (including both monoterpenes and sesquiterpenes) reached peak levels in early June. Through single-molecule real-time (SMRT) sequencing, corrected by Illumina RNA-sequencing (RNA-Seq), 44 full-length transcripts potentially involved in terpenoid biosynthesis were identified in this study. Differentially expressed genes (DEGs) exhibiting time-dependent expression patterns were divided into 12 coexpression clusters. Integrated chemical and transcriptomic analyses revealed distinct time-specific transcriptomic patterns associated with terpenoid biosynthesis. Subsequent hierarchical clustering and correlation analyses ultimately identified six transcripts that were closely linked to the production of these two types of terpenoid within A. argyi leaves, revealing that the structural diversity of terpenoid is related to the generation of the diverse terpene skeletons by prenyltransferase (TPS) family of enzymes. These findings can guide further studies of the molecular mechanisms underlying the quality of A. argyi leaves, aiding in the selection of optimal timing for harvests of A. argyi.


Assuntos
Artemisia , Dimetilaliltranstransferase , Óleos Voláteis , Artemisia/química , Dimetilaliltranstransferase/metabolismo , Monoterpenos/metabolismo , RNA , Terpenos/metabolismo , Transcriptoma
13.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164140

RESUMO

Non-alcoholic fatty liver disease (NAFLD) embraces several forms of liver disorders involving fat disposition in hepatocytes ranging from simple steatosis to the severe stage, namely, non-alcoholic steatohepatitis (NASH). Recently, several experimental in vivo animal models for NAFLD/NASH have been established. However, no reproducible experimental animal model displays the full spectrum of pathophysiological, histological, molecular, and clinical features associated with human NAFLD/NASH progression. Although methionine-choline-deficient (MCD) diet and high-fat diet (HFD) models can mimic histological and metabolic abnormalities of human disease, respectively, the molecular signaling pathways are extremely important for understanding the pathogenesis of the disease. This review aimed to assess the differences in gene expression patterns and NAFLD/NASH progression pathways among the most common dietary animal models, i.e., HFD- and MCD diet-fed animals. Studies showed that the HFD and MCD diet could induce either up- or downregulation of the expression of genes and proteins that are involved in lipid metabolism, inflammation, oxidative stress, and fibrogenesis pathways. Interestingly, the MCD diet model could spontaneously develop liver fibrosis within two to four weeks and has significant effects on the expression of genes that encode proteins and enzymes involved in the liver fibrogenesis pathway. However, such effects in the HFD model were found to occur after 24 weeks with insulin resistance but appear to cause less severe fibrosis. In conclusion, assessing the abnormal gene expression patterns caused by different diet types provides valuable information regarding the molecular mechanisms of NAFLD/NASH and predicts the clinical progression of the disease. However, expression profiling studies concerning genetic variants involved in the development and progression of NAFLD/NASH should be conducted.


Assuntos
Deficiência de Colina , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica , Transcriptoma , Animais , Colina , Deficiência de Colina/induzido quimicamente , Deficiência de Colina/genética , Deficiência de Colina/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
14.
BMC Genomics ; 22(1): 883, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872495

RESUMO

BACKGROUND: BBX transcription factors are a kind of zinc finger transcription factors with one or two B-box domains, which partilant in plant growth, development and response to abiotic or biotic stress. The BBX family has been identified in Arabidopsis, rice, tomato and some other model plant genomes. RESULTS: Here, 24 CaBBX genes were identified in pepper (Capsicum annuum L.), and the phylogenic analysis, structures, chromosomal location, gene expression patterns and subcellular localizations were also carried out to understand the evolution and function of CaBBX genes. All these CaBBXs were divided into five classes, and 20 of them distributed in 11 of 12 pepper chromosomes unevenly. Most duplication events occurred in subgroup I. Quantitative RT-PCR indicated that several CaBBX genes were induced by abiotic stress and hormones, some had tissue-specific expression profiles or differentially expressed at developmental stages. Most of CaBBX members were predicated to be nucleus-localized in consistent with the transient expression assay by onion inner epidermis of the three tested CaBBX members (CaBBX5, 6 and 20). CONCLUSION: Several CaBBX genes were induced by abiotic stress and exogenous phytohormones, some expressed tissue-specific and variously at different developmental stage. The detected CaBBXs act as nucleus-localized transcription factors. Our data might be a foundation in the identification of CaBBX genes, and a further understanding of their biological function in future studies.


Assuntos
Capsicum , Solanum lycopersicum , Capsicum/genética , Genoma de Planta , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética
15.
Fish Shellfish Immunol ; 114: 119-131, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930548

RESUMO

As complex components of innate immune system, members of complement system play crucial roles during the process of defensing against pathogens. Black rockfish (Sebastes schlegelii) is one of the important aquaculture species in East Asian. However, studies of complement genes in black rockfish and its related immune activities are still lacking. Therefore, a total of 112 members of the complement genes were identified from the genome of black rockfish and were classified into five subgroups. According to their functional annotations, 30 genes belonged to pattern recognition, 6 genes belonged to proteases, 14 genes belonged to complement components, 36 genes belonged to receptors, and 26 genes belonged to regulators. It can be found that many complement genes evolved into multi-copies, especially in teleost, which may be influenced by whole-genome duplication or tandem duplication events. Complement genes were randomly distributed on 22 chromosomes. The number of introns of complement genes varied from 1 to 70. Results of the expression patterns of 10 randomly selected genes from 5 subtypes response to Vibrio anguillarum infection revealed that most of the members of the complement genes were induced in gill and skin. In contrast, most genes in intestine showed downregulation. This study systematically characterized and analyzed the complement genes in black rockfish and provided new insights into their functions responding to bacterial infection.


Assuntos
Evolução Biológica , Proteínas do Sistema Complemento/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Vibrio , Animais , Cromossomos , Proteínas do Sistema Complemento/genética , Doenças dos Peixes/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Estudo de Associação Genômica Ampla , Perciformes
16.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573234

RESUMO

Triacylglycerol Lipases (TGLs) are the major enzymes involved in triacylglycerol catabolism. TGLs hydrolyze long-chain fatty acid triglycerides, which are involved in plant development and abiotic stress responses. Whereas most studies of TGLs have focused on seed oil metabolism and biofuel in plants, limited information is available regarding the genome-wide identification and characterization of the TGL gene family in tomato (Solanum lycopersicum L.). Based on the latest published tomato genome annotation ITAG4.0, 129 SlTGL genes were identified and classified into 5 categories according to their structural characteristics. Most SlTGL genes were distributed on 3 of 12 chromosomes. Segment duplication appeared to be the driving force underlying expansion of the TGL gene family in tomato. The promoter analysis revealed that the promoters of SlTGLs contained many stress responsiveness cis-elements, such as ARE, LTR, MBS, WRE3, and WUN-motifs. Expression of the majority of SlTGL genes was suppressed following exposure to chilling and heat, while it was induced under drought stress, such as SlTGLa9, SlTGLa6, SlTGLa25, SlTGLa26, and SlTGLa13. These results provide valuable insights into the roles of the SlTGL genes family and lay a foundation for further functional studies on the linkage between triacylglycerol catabolism and abiotic stress responses in tomato.


Assuntos
Regulação da Expressão Gênica de Plantas , Lipase/genética , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Estresse Fisiológico/genética , Mapeamento Cromossômico , Temperatura Baixa/efeitos adversos , Secas , Perfilação da Expressão Gênica , Genoma de Planta/genética , Temperatura Alta/efeitos adversos , Lipase/metabolismo , Família Multigênica/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Triglicerídeos/metabolismo
17.
Clin Gastroenterol Hepatol ; 18(1): 115-122.e1, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981000

RESUMO

BACKGROUND & AIMS: Sleep disruption modifies the immune system and can trigger flares of inflammatory bowel diseases (IBD). Changes in expression of clock genes have been reported in patients with IBD. We investigated whether a change in the circadian clock is an early event in development of IBD. METHODS: We performed a prospective study of patients younger than 21 years old who underwent diagnostic endoscopies at the pediatric and adult gastroenterology units at the Tel Aviv Sourasky Medical Center from August 2016 through August 2017. Questionnaires were completed by 32 patients with IBD (8-21 years old) and 18 healthy individuals (controls) that provided data on demographics, sleep, disease activity scores. We also obtained data on endoscopic scores, anthropometric parameters, blood level of C-reactive protein (CRP), and fecal level of calprotectin. Peripheral blood and intestinal mucosa samples were analyzed for expression levels of clock gene (CLOCK, BMAL1, CRY1, CRY2, PER1, and PER2). RESULTS: Levels of CRP and fecal calprotectin were significantly higher in patients with IBD compared with controls (P<.05). Expression levels of clock genes (CLOCK, CRY1, CRY2, PER1, and PER2) were significantly lower in inflamed intestinal mucosa from patients compared with intestinal mucosa from controls (P<.05). Expression levels of all clock genes except for PER2, were also significantly lower in non-inflamed intestinal mucosal tissues from patients compared with controls (P<.05). Expression levels of clock genes (CLOCK, BMAL1, CRY1, CRY2, PER1 and PER2) were lower in white blood cells from patients with IBD compared with controls. This reduction was greater in white blood cells from patients with ulcerative colitis than in patients with Crohn's disease. CONCLUSION: Young, newly diagnosed, untreated patients with IBD have reduced expression of clock genes in inflamed and non-inflamed intestinal mucosal samples, and also in blood cells, compared with healthy individuals. Alterations in expression of clock genes might be an early event in IBD pathogenesis. ClinicalTrials.gov Identifier: NCT03662646.


Assuntos
Relógios Circadianos/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Doenças Inflamatórias Intestinais/genética , Adolescente , Criança , Relógios Circadianos/imunologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/imunologia , Colonoscopia , Feminino , Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Leucócitos/imunologia , Masculino , Estudos Prospectivos , Transtornos do Sono do Ritmo Circadiano/genética , Transtornos do Sono do Ritmo Circadiano/imunologia
18.
BMC Plant Biol ; 20(1): 405, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873228

RESUMO

BACKGROUND: Chenopodium quinoa Willd. (quinoa) is a pseudocereal crop of the Amaranthaceae family and represents a promising species with the nutritional content and high tolerance to stressful environments, such as soils affected by high salinity. The basic leucine zipper (bZIP) transcription factor represents exclusively in eukaryotes and can be related to many biological processes. So far, the genomes of quinoa and 3 other Amaranthaceae crops (Spinacia oleracea, Beta vulgaris, and Amaranthus hypochondriacus) have been fully sequenced. However, information about the bZIPs in these Amaranthaceae species is limited, and genome-wide analysis of the bZIP family is lacking in quinoa. RESULTS: We identified 94 bZIPs in quinoa (named as CqbZIP1-CqbZIP94). All the CqbZIPs were phylogenetically splitted into 12 distinct subfamilies. The proportion of CqbZIPs was different in each subfamily, and members within the same subgroup shared conserved exon-intron structures and protein motifs. Besides, 32 duplicated CqbZIP gene pairs were investigated, and the duplicated CqbZIPs had mainly undergone purifying selection pressure, which suggested that the functions of the duplicated CqbZIPs might not diverge much. Moreover, we identified the bZIP members in 3 other Amaranthaceae species, and 41, 32, and 16 orthologous gene pairs were identified between quinoa and S. oleracea, B. vulgaris, and A. hypochondriacus, respectively. Among them, most were a single copy being present in S. oleracea, B. vulgaris, and A. hypochondriacus, and two copies being present in allotetraploid quinoa. The function divergence within the bZIP orthologous genes might be limited. Additionally, 11 selected CqbZIPs had specific spatial expression patterns, and 6 of 11 CqbZIPs were up-regulated in response to salt stress. Among the selected CqbZIPs, 3 of 4 duplicated gene pairs shared similar expression patterns, suggesting that these duplicated genes might retain some essential functions during subsequent evolution. CONCLUSIONS: The present study provided the first systematic analysis for the phylogenetic classification, motif and gene structure, expansion pattern, and expression profile of the bZIP family in quinoa. Our results would lay an important foundation for functional and evolutionary analysis of CqbZIPs, and provide promising candidate genes for further investigation in tissue specificity and their functional involvement in quinoa's resistance to salt stress.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Chenopodium quinoa/genética , Evolução Molecular , Expressão Gênica , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
19.
BMC Genet ; 20(1): 91, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801457

RESUMO

BACKGROUND: The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. RESULTS: To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. CONCLUSIONS: This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Solanum tuberosum/crescimento & desenvolvimento , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Imunidade Vegetal , Proteínas de Plantas/genética , Solanum tuberosum/genética , Estresse Fisiológico
20.
BMC Genomics ; 19(1): 661, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200887

RESUMO

BACKGROUND: Pectin is a major component and structural polysaccharide of the primary cell walls and middle lamella of higher plants. Pectate lyase (PEL, EC 4.2.2.2), a cell wall modification enzyme, degrades de-esterified pectin for cell wall loosening, remodeling and rearrangement. Nevertheless, there have been few studies on PEL genes and no comprehensive analysis of the PEL gene family in cotton. RESULTS: We identified 53, 42 and 83 putative PEL genes in Gossypium raimondii (D5), Gossypium arboreum (A2), and Gossypium hirsutum (AD1), respectively. These PEL genes were classified into five subfamilies (I-V). Members from the same subfamilies showed relatively conserved gene structures, motifs and protein domains. An analysis of gene chromosomal locations and gene duplication revealed that segmental duplication likely contributed to the expansion of the GhPELs. The 2000 bp upstream sequences of all the GhPELs contained auxin response elements. A transcriptomic data analysis showed that 62 GhPELs were expressed in various tissues. Notably, most (29/32) GhPELs of subfamily IV were preferentially expressed in the stamen, and five GhPELs of subfamily V were prominently expressed at the fiber elongation stage. In addition, qRT-PCR analysis revealed the expression characteristics of 24 GhPELs in four pollen developmental stages and significantly different expression of some GhPELs between long- and short-fiber cultivars. Moreover, some members were responsive to IAA treatment. The results indicate that GhPELs play significant and functionally diverse roles in the development of different tissues. CONCLUSIONS: In this study, we comprehensively analyzed PELs in G. hirsutum, providing a foundation to better understand the functions of GhPELs in different tissues and pathways, especially in pollen, fiber and the auxin signaling pathway.


Assuntos
Genômica , Gossypium/enzimologia , Gossypium/genética , Polissacarídeo-Liases/genética , Sequência Conservada , Flores/crescimento & desenvolvimento , Genoma de Planta/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA