Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36502428

RESUMO

At present, the study on the pathogenesis of Alzheimer's disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/genética , Redes Neurais de Computação , Algoritmos , Encéfalo/diagnóstico por imagem
2.
J Med Virol ; 96(6): e29708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804179

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Estudos Retrospectivos , Masculino , Feminino , Glicoproteína da Espícula de Coronavírus/genética , Pessoa de Meia-Idade , Estudos Longitudinais , Genoma Viral/genética , Idoso , Sequenciamento Completo do Genoma , Evolução Molecular , Hospitalização , Nasofaringe/virologia , Teorema de Bayes , Adulto
3.
Prenat Diagn ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153191

RESUMO

BACKGROUND: The clinical performance of RHDO-based NIPD for PKU during early gestation remains under-evaluated. Furthermore, studies focused on SNP loci obtained by next-generation sequencing to analyze the genetic evolution of pathogenic variations in PKU is limited. METHODS: Maternal peripheral blood, along with proband and paternal samples, was collected between 7 and 12 weeks of gestation. The PAH gene and surrounding high heterozygosity SNPs were targeted for enrichment and sequencing. Fetal genotypes were inferred using RHDO-based NIPD. High-resolution PAH haplotypes were used for the analysis of two common pathogenic variants in the Chinese population: c.728G>A and c.1238G>C. RESULTS: Sixty one PKU families participated with an average fetal fraction of 6.08%. The median gestational age was 8+6 weeks. RHDO-based NIPD successfully identified fetal genotypes in 59 cases (96.72%, 59/62). Two cases failed because of insufficient informative SNPs. In addition, a recombination event was assessed in one fetus of 59 cases. Six, and three haplotypes were identified for c.728G>A(p.Arg243Gln) and c.1238G>C(p.Arg413Pro), respectively. Hap_3 and hap_8 were identified as the ancestral haplotypes for these pathogenic variants, with other haplotypes arising from mutations or recombination based on these ancestral haplotypes. CONCLUSIONS: This study validates the feasibility of an RHDO-based assay for NIPD of PKU in early pregnancy and introduces its application in the demonstration of founder effects in recurrent pathogenic variations, offering new insights into the evolutionary analysis of PAH variations.

4.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999970

RESUMO

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Assuntos
Acetatos , Ciclopentanos , Etilenos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Filogenia , Proteínas de Plantas , Taraxacum , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Taraxacum/genética , Taraxacum/metabolismo , Taraxacum/efeitos dos fármacos , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Genoma de Planta , Estudo de Associação Genômica Ampla
5.
Curr Issues Mol Biol ; 45(4): 3628-3639, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37185760

RESUMO

Feline panleukopenia virus (FPV) is the causative agent of hemorrhagic gastroenteritis in feline animals. FPV has been evolving over time, and there have been several different strains of the virus identified. Some of these strains may be more virulent or more resistant to current vaccines than others, which highlights the importance of ongoing research and monitoring of FPV evolution. For FPV genetic evolution analysis, many studies focus on the main capsid protein (VP2), but limited information is available on the nonstructural gene NS1 and structural gene VP1. In the present study, we firstly isolated two novel FPV strains circulating in Shanghai, China, and performed full-length genome sequencing for the desired strains. Subsequently, we focused on analyzing the NS1, VP1 gene, and the encoding protein, and conducted a comparative analysis among the worldwide circulating FPV and Canine parvovirus Type 2 (CPV-2) strains, which included the strains isolated in this study. We found that the 2 structural viral proteins, VP1 and VP2, are splice variants, and VP1 has a 143 amino-acid-long N-terminal compared to VP2. Furthermore, phylogenetic analysis showed that divergent evolution between FPV and CPV-2 virus strains were clustered mostly by country and year of detection. In addition, much more continuous antigenic type changes happened in the process of CPV-2 circulating and evolution compared to FPV. These results stress the importance of the continuous study of viral evolution and provide a comprehensive perspective of the association between viral epidemiology and genetic evolution.

6.
BMC Plant Biol ; 23(1): 84, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750935

RESUMO

BACKGROUND: The complex physical structure and abundant repeat sequences make it difficult to assemble the mitogenomes of seed plants, especially gymnosperms. Only approximately 33 mitogenomes of gymnosperms have been reported. However, as the most widely distributed and the second largest family among gymnosperms, Cupressaceae has only six assembled mitogenomes, including five draft mitogenomes and one complete mitogenome, which has greatly hindered the understanding of mitogenome evolution within this large family, even gymnosperms. RESULTS: In this study, we assembled and validated the complete mitogenome of Thuja sutchuenensis, with a size of 2.4 Mb. Multiple sequence units constituted its complex structure, which can be reduced to three linear contigs and one small circular contig. The analysis of repeat sequences indicated that the numbers of simple sequence repeats increased during the evolutionary history of gymnosperms, and the mitogenome of Thuja sutchuenensis harboured abundant extra-long repeats (more than 5 kb). Additionally, the longest repeat sequence identified in these seven gymnosperms also came from the mitogenome of Thuja sutchuenensis, with a length of up to 47 kb. The analysis of colinear blocks and gene clusters both revealed that the orders of mitochondrial genes within gymnosperms was not conserved. The comparative analysis showed that only four tRNAs were shared by seven gymnosperms, namely, trnD-GUC, trnE-UUC, trnI-CAU and trnY-GUA. Furthermore, four genes have undergone potential positive selection in most gymnosperm species, namely, atp8, ccmB, mttB and sdh4. CONCLUSION: We successfully assembled the second complete mitogenome within Cupressaceae and verified that it consisted of multiple sequence units. Our study also indicated that abundant long repeats may contribute to the generation of the complex conformation of the mitogenome of Thuja sutchuenensis. The investigation of Thuja sutchuenensis's mitogenome in our study provides new insight into further understanding the complex mitogenome architecture within gymnosperms.


Assuntos
Cupressaceae , Genoma Mitocondrial , Thuja , Cupressaceae/genética , Sequências Repetitivas de Ácido Nucleico , Cycadopsida/genética , Filogenia
7.
J Med Virol ; 95(5): e28791, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226579

RESUMO

Whole-genome sequencing (WGS) has been widely used for the genomic characterization and the phylogenesis of mpox virus (MPXV) 2022 multi-country outbreak. To date, no evidence has been reported on intra-host evolution within samples collected over time from a single patient with long-term infection. Fifty-one samples were collected from five patients at different time points post-symptom onset. All samples were confirmed as MPXV DNA positive, amplified by a multiplexed PCR amplicon, and sequenced by WGS. Complete MPXV genomes were assembled by reference mapping and then aligned to perform phylogenetic and hierarchical clustering analysis. Large intra-host variability was observed among the MPXV genomes sequenced from samples of two immunocompromised with advanced HIV-1 infection patients with prolonged MPXV shedding. Overall, 20 nucleotide mutations were identified in the 32 genomes from HIV patients, differently distributed in samples collected from different tissues and at different time points. No sequence compartmentalization nor variation was observed in the three patients with rapid viral clearance. MPXV exhibits adaptation to changing environments within the infected host and consequently demonstrates tissue compartmentalization. Further studies are needed to elucidate the role of this adaptation in forming a pool of genetic variability and contributing to viral persistence and its clinical implications.


Assuntos
Infecções por HIV , Mpox , Humanos , Filogenia , Genoma Viral , Análise por Conglomerados
8.
J Med Virol ; 95(12): e29316, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38103032

RESUMO

An increasing number of studies have reported that atypical hand, foot, and mouth disease (HFMD) is becoming a new concern for children's health. At present, there is no official definition for atypical HFMD, but some studies have defined that it occurs at anatomic sites not listed in the definition of HFMD issued by the World Health Organization. Several pathogens have been reported to cause atypical HFMD, such as Coxsackievirus (CV)A6. As one of the most prevalent enteroviruses in the world, CVA6 seems to affect a wider range of children and causes more severe and prolonged illness than other enteroviruses. The early lesions of atypical HFMD are very similar to the clinical presentations of other diseases, such as eczema, which poses a challenge for clinicians aiming to identify and diagnose HFMD in a timely manner. Here, we report on six atypical HFMD patients caused by recombinant CVA6 variants, and the atypical manifestations include eczema coxsackium, large herpes, rice-like red papules and herpes, purpuric rash, and onychomadesis, as well as and large red herpes on scalp, perianal, testicles, shoulders and neck, and other atypical eruption sites, hoping to draw the attention of other pediatricians. This study will provide scientific guidance for timely diagnosis of HFMD to prevent serious complications.


Assuntos
Eczema , Enterovirus , Exantema , Doença de Mão, Pé e Boca , Criança , Humanos , Doença de Mão, Pé e Boca/diagnóstico , Filogenia , Enterovirus/genética , China , Anticorpos Antivirais
9.
Adv Exp Med Biol ; 1417: 59-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223859

RESUMO

Comparative analysis of the genomic sequences of multiple hepatitis E virus (HEV) isolates has revealed extensive genomic diversity among them. Recently, a variety of genetically distinct HEV variants have also been isolated and identified from large numbers of animal species, including birds, rabbits, rats, ferrets, bats, cutthroat trout, and camels, among others. Furthermore, it has been reported that recombination in HEV genomes takes place in animals and in human patients. Also, chronic HEV infection in immunocompromised individuals has revealed the presence of viral strains carrying insertions from human genes. This paper reviews current knowledge on the genomic variability and evolution of HEV.


Assuntos
Vírus da Hepatite E , Humanos , Animais , Coelhos , Ratos , Vírus da Hepatite E/genética , Furões , Evolução Molecular , Genômica , Hospedeiro Imunocomprometido
10.
Virus Genes ; 58(5): 403-413, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35780442

RESUMO

Orf virus (ORFV, species Orf virus) belongs to the typical species of the Parapoxvirus genus of the family Poxviridae, which infects sheep, goats, and humans with worldwide distribution. Although outbreaks of Orf have been reported sequentially in several Chinese provinces, the epidemiology of Orf and genetic diversity of ORFV strains still needs to be further characterized. To further reveal the genomic organization of the ORFV-GZ18 and ORFV-CL18 isolates, the complete genome sequences of two recently obtained ORFV isolates were sequenced using the next-generation sequencing technology and analyzed, which had been deposited in the GenBank database under accession number MN648218 and MN648219, respectively. The complete genomic sequence of ORFV-CL18 was 138,495 bp in length, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 3481 bp at both ends, which has genomic structure typical Parapoxviruses. The overall genomic organization of the fully sequenced genome of ORFV-GZ18 was consistent with ORFV-CL18 genome, with a complete genome size of 138,446 nucleotides, containing 131 ORFs flanked by ITRs of 3469 bp. Additionally, the overall G + C contents of ORFV-GZ18 and ORFV-CL18 genome sequences were about 63.9% and 63.8%, respectively. The phylogenetic analysis showed that both ORFV-GZ18 and ORFV-CL18 were genetically closely related to ORFV-SY17 derived from sheep. In summary, the complete genomic sequences of ORFV-GZ18 and ORFV-CL18 are reported, with the hope it will be useful to investigate the host range, geographic distribution, and genetic evolution of the virus in Southern West and Northern East China.


Assuntos
Ectima Contagioso , Vírus do Orf , Animais , China/epidemiologia , Genômica , Cabras , Humanos , Nucleotídeos , Vírus do Orf/genética , Filogenia , Ovinos
11.
Virus Genes ; 58(6): 589-593, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183048

RESUMO

Hepatitis E virus (HEV) infection has a global distribution with diverse hosts, including mammals and avians. In this study, an avian Hepatitis E virus (aHEV) strain with a high mortality rate of about 30%, designated as SDXT20, was obtained from the liver of 30-week-old Hubbard chickens with severe hepatosplenomegaly in 2020 in Eastern China and HEV was proved to be the only pathogen by next-generation sequencing. Its complete genome, which encodes three open reading frames (ORFs), is 6649 nt in length. ORF1-3 encodes three proteins with lengths of 1532 aa, 606 aa, and 82 aa, respectively, and ORF2 and ORF3 overlap with each other. BLAST-based similarity analysis of the complete viral genome demonstrated that SDXT20 had merely 80.5-92.2% similarity with avian Avihepevirus magniiecur strains and 50.4%-54.8% lower similarity with Paslahepevirus balayani, Rocahepevirus ratti, and Chirohepevirus eptesici species. Further genetic evolution analysis of the complete genome and ORF2 revealed that the isolate was genetically distinct from known aHEVs, and it belonged to a novel genetically distinct aHEV. This study provides data for further analysis of the multi-host and cross-host genetic evolution of HEVs.


Assuntos
Vírus da Hepatite E , Hepatite E , Hepevirus , Animais , Hepevirus/genética , Galinhas , Vírus da Hepatite E/genética , Hepatite E/veterinária , Genoma Viral/genética , Fases de Leitura Aberta/genética , China , Mamíferos
12.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457198

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and has a unique metastatic route using ascites, known as the transcoelomic root. However, studies on ascites and contained cellular components have not yet been sufficiently clarified. In this review, we focus on the significance of accumulating ascites, contained EOC cells in the form of spheroids, and interaction with non-malignant host cells. To become resistant against anoikis, EOC cells form spheroids in ascites, where epithelial-to-mesenchymal transition stimulated by transforming growth factor-ß can be a key pathway. As spheroids form, EOC cells are also gaining the ability to attach and invade the peritoneum to induce intraperitoneal metastasis, as well as resistance to conventional chemotherapy. Recently, accumulating evidence suggests that EOC spheroids in ascites are composed of not only cancer cells, but also non-malignant cells existing with higher abundance than EOC cells in ascites, including macrophages, mesothelial cells, and lymphocytes. Moreover, hetero-cellular spheroids are demonstrated to form more aggregated spheroids and have higher adhesion ability for the mesothelial layer. To improve the poor prognosis, we need to elucidate the mechanisms of spheroid formation and interactions with non-malignant cells in ascites that are a unique tumor microenvironment for EOC.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Ascite/patologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Esferoides Celulares/metabolismo , Microambiente Tumoral
13.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424158

RESUMO

Bovine astrovirus (BoAstV) belongs to genus Mamastravirus (MAstV). It can be detected in the faeces of both diarrhoeal and healthy calves. However, its prevalence, genetic diversity, and association with cattle diarrhoea are poorly understood. In this study, faecal samples of 87 diarrhoeal and 77 asymptomatic calves from 20 farms in 12 provinces were collected, and BoAstV was detected with reverse transcription-polymerase chain reaction (RT-PCR). The overall prevalence rate of this virus in diarrhoeal and asymptomatic calves was 55.17 % (95 % CI: 44.13, 65.85 %) and 36.36 % (95 % CI: 25.70, 48.12 %), respectively, indicating a correlation between BoAstV infection and calf diarrhoea (OR=2.15, P=0.024). BoAstV existed mainly in the form of co-infection (85.53 %) with one to five of nine viruses, and there was a strong positive correlation between BoAstV co-infection and calf diarrhoea (OR=2.83, P=0.004). Binary logistic regression analysis confirmed this correlation between BoAstV co-infection and calf diarrhoea (OR=2.41, P=0.038). The co-infection of BoAstV and bovine rotavirus (BRV) with or without other viruses accounted for 70.77 % of all the co-infection cases. The diarrhoea risk for the calves co-infected with BoAstV and BRV was 8.14-fold higher than that for the calves co-infected with BoAstV and other viruses (OR=8.14, P=0.001). Further, the co-infection of BoAstV/BRV/bovine kobuvirus (BKoV) might increase the risk of calf diarrhoea by 14.82-fold, compared with that of BoAstV and other viruses (OR=14.82, P <0.001). Then, nearly complete genomic sequences of nine BoAstV strains were assembled by using next-generation sequencing (NGS) method. Sequence alignment against known astrovirus (AstV) strains at the levels of both amino acids and nucleotides showed a high genetic diversity. Four genotypes were identified, including two known genotypes MAstV-28 (n=3) and MAstV-33 (n=2) and two novel genotypes designated tentatively as MAstV-34 (n=1) and MAstV-35 (n=3). In addition, seven out of nine BoAstV strains showed possible inter-genotype recombination and cross-species recombination. Therefore, our results increase the knowledge about the prevalence and the genetic evolution of BoAstV and provide evidence for the association between BoAstV infection and calf diarrhoea.


Assuntos
Infecções por Astroviridae , Doenças dos Bovinos , Coinfecção , Diarreia , Animais , Animais Recém-Nascidos/virologia , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Diarreia/epidemiologia , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Prevalência
14.
BMC Infect Dis ; 21(1): 840, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412585

RESUMO

BACKGROUND: Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). China is the third in top 8 high TB burden countries and Guangxi is one of the high incidence areas in South China. Determine bacterial factors that affected TB incidence rate is a step toward Ending the TB epidemic. RESULTS: Genomes of M. tuberculosis cultures from a relatively high and low incidence region in Guangxi have been sequenced. 347 of 358(96.9%) were identified as M. tuberculosis. All the strains belong to Lineage 2 and Lineage 4, except for one in Lineage 1. We found that the genetic structure of the M. tuberculosis population in each county varies enormously. Low incidence rate regions have a lower prevalence of Beijing genotypes than other regions. Four isolates which harbored mutT4-48 also had mutT2-58 mutations. It is suggested that strains from the ancestors of modern Beijing lineage is circulating in Guangxi. Strains of modern Beijing lineage (OR=2.04) were more likely to acquire drug resistances than Lineage 4. Most of the lineage differentiation SNPs are related to cell wall biosynthetic pathways. CONCLUSIONS: These results provided a higher resolution to better understand the history of transmission of M. tuberculosis from/to South China. And the incidence rate of tuberculosis might be affected by bacterial population structure shaped by demographic history. Our findings also support the hypothesis that Modern Beijing lineage originated in South China.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/uso terapêutico , China/epidemiologia , Genótipo , Humanos , Incidência , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
15.
Mol Biol Evol ; 36(6): 1215-1219, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865278

RESUMO

The importance of climate in determining biodiversity patterns has been well documented. However, the relationship between climate and rates of genetic evolution remains controversial. Latitude and elevation have been associated with rates of change in genetic markers such as cytochrome b. What is not known, however, is the strength of such associations and whether patterns found among these genes apply across entire genomes. Here, using bumblebee genetic data from seven subgenera of Bombus, we demonstrate that all species occupying warmer elevations have undergone faster genome-wide evolution than those in the same subgenera occupying cooler elevations. Our findings point to a critical biogeographic role in the relative rates of whole species evolution, potentially influencing global biodiversity patterns.


Assuntos
Altitude , Abelhas/genética , Evolução Molecular , Genoma de Inseto , Animais , Filogenia
16.
Dev Genes Evol ; 230(4): 279-294, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32623522

RESUMO

Genome studies have uncovered many examples of essential gene loss, raising the question of how ancient genes transition from essentiality to dispensability. We explored this process for the deeply conserved E3 ubiquitin ligase Murine double minute (Mdm), which is lacking in Drosophila despite the conservation of its main regulatory target, the cellular stress response gene p53. Conducting gene expression and knockdown experiments in the red flour beetle Tribolium castaneum, we found evidence that Mdm has remained essential in insects where it is present. Using bioinformatics approaches, we confirm the absence of the Mdm gene family in Drosophila, mapping its loss to the stem lineage of schizophoran Diptera and Pipunculidae (big-headed flies), about 95-85 million years ago. Intriguingly, this gene loss event was preceded by the de novo origin of the gene Companion of reaper (Corp), a novel p53 regulatory factor that is characterized by functional similarities to vertebrate Mdm2 despite lacking E3 ubiquitin ligase protein domains. Speaking against a 1:1 compensatory gene gain/loss scenario, however, we found that hoverflies (Syrphidae) and pointed-wing flies (Lonchopteridae) possess both Mdm and Corp. This implies that the two p53 regulators have been coexisting for ~ 150 million years in select dipteran clades and for at least 50 million years in the lineage to Schizophora and Pipunculidae. Given these extensive time spans of Mdm/Corp coexistence, we speculate that the loss of Mdm in the lineage to Drosophila involved further acquisitions of compensatory gene activities besides the emergence of Corp. Combined with the previously noted reduction of an ancestral P53 contact domain in the Mdm homologs of crustaceans and insects, we conclude that the loss of the ancient Mdm gene family in flies was the outcome of incremental functional regression over long macroevolutionary time scales.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Genes Essenciais/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Tribolium/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Evolução Molecular , Técnicas de Silenciamento de Genes , Genômica , Filogenia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Tribolium/embriologia , Proteína Supressora de Tumor p53/genética
17.
Microb Pathog ; 149: 104531, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980471

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) 1 and PRRSV 2 have coexisted in China for a very long time. In this study, the complete genomic characterization of a PRRSV 1 strain named KZ2018 was conducted. The results showed that it shared 88.6% identity with Lelystad virus and 81.9-90.8% identities with other Chinese PRRSV 1 strains. Further study showed that its nsp2 protein had a unique discontinuous 6-amino acid (aa) deletion (aa357-360+aa411+aa449). Additionally, its GP3 and GP4 contained a long continuous 18-aa deletion in their overlapped region, which has never been described in other Chinese PRRSV 1 isolates. Amino acid analysis of cell epitopes revealed that GP3245-256 and GP457-68 were the most variable epitopes among different Chinese PRRSV 1 isolates. The results might enrich our knowledge of PRRSV 1 strains in China.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Sequência de Aminoácidos , Aminoácidos , Animais , China , Variação Genética , Guanidinas , Filogenia , Piperazinas , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Alinhamento de Sequência , Suínos
18.
Virus Genes ; 56(5): 642-645, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447588

RESUMO

Seneca Valley virus (SVV) is an emerging global picornavirus that causes porcine idiopathic vesicular disease. We characterized the genome and conducted evolutionary and recombination analyses of four newly identified SVV strains which were CH-GDZS-2019, CH-GDMZ-2019, CH-GDHZ01-2019, and CH-GDHZ02-2019. Sequence alignment and phylogenetic analysis showed that strains circulating in swine herds in China were genetically diverse and complex. Recombination analyses indicated that strain CH-GDZS-2019 was derived from strains USA-IA44662-2015-P1 and USA-GBI29-2015, which were both isolated in the USA in 2015, while CH-GDMZ-2019 was derived from the Chinese field strains 1-2018-BH-China and CH-GDQC-2017. Our results provided important insights into the molecular characterization of the SVV strains co-circulating in Guangdong Province in China in 2019 and demonstrated the importance of additional SVV surveillance in China.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Animais , China/epidemiologia , Variação Genética , Genoma Viral , Filogenia , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , RNA Viral/genética , Recombinação Genética , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
19.
BMC Vet Res ; 16(1): 96, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293447

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease (PCVAD). Its prevalence in swine herds was first reported in China in 2000. PCV2 infection causes immunosuppression that leads to multiple diseases, causing serious economic problems for the swine industry in China. Since information on the genetic variation of PCV2 in Yunnan province is limited, this study aims to investigate the molecular epidemiological and evolutionary characteristics of PCV2 from 2016 to 2019. METHODS: A total of 279 clinical samples were collected from different regions of Yunnan between 2016 to 2019, and PCV2 was detected by PCR. We then amplified full genomes from the positive samples, and the sequences were analysed for homology and genetic evolution. RESULTS: Overall, 60.93% (170/279) of the screened swine herd samples were positive for PCV2. We sequenced 15 Yunnan province PCV2 strains from positive samples. Analyses of the complete genomes and Cap genes led to the classification of the 15 Yunnan PCV2 strains into PCV2a (2 of 15), PCV2b (1of 15) and PCV2d (12 of 15). All strains shared 94.3-99.9% of their identities with the nucleotide sequences of complete genomes in this study and shared 94.2-99.9% identity with the reference sequences. All strains share 89.4-100% and 86.8-100% of their identities with the nucleotide and amino acid (aa) sequences of Cap, respectively. CONCLUSIONS: The results of this study provide evidence that PCV2a, PCV2b and PCV2d genotypes coexisted in Yunnan Province from 2016 to 2019, and the priority prevalence genotype was PCV2d. The data provide evidence for the increased genetic diversity and insights into the molecular epidemiology of PCV2. This study also provides basic data for the Yunnan province PCV2 molecular epidemiological survey and accumulates effective materials for the development of PCV2 vaccines.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Variação Genética , Animais , China/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/classificação , Evolução Molecular , Genoma Viral , Epidemiologia Molecular , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
20.
Emerg Infect Dis ; 25(3): 489-500, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789138

RESUMO

Shiga toxin-producing Escherichia coli serogroup O26 is an important public health pathogen. Phylogenetic bacterial lineages in a country can be associated with the level and timing of international imports of live cattle, the main reservoir. We sequenced the genomes of 152 E. coli O26 isolates from New Zealand and compared them with 252 E. coli O26 genomes from 14 other countries. Gene variation among isolates from humans, animals, and food was strongly associated with country of origin and stx toxin profile but not isolation source. Time of origin estimates indicate serogroup O26 sequence type 21 was introduced at least 3 times into New Zealand from the 1920s to the 1980s, whereas nonvirulent O26 sequence type 29 strains were introduced during the early 2000s. New Zealand's remarkably fewer introductions of Shiga toxin-producing Escherichia coli O26 compared with other countries (such as Japan) might be related to patterns of trade in live cattle.


Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Variação Genética , Genoma Bacteriano , Genômica , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Infecções por Escherichia coli/transmissão , Evolução Molecular , Genômica/métodos , Saúde Global , Humanos , Anotação de Sequência Molecular , Nova Zelândia/epidemiologia , Filogenia , Sorogrupo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA