Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671112

RESUMO

Despite management efforts with standard surgery, radiation, and chemotherapy, glioblastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-derived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3ß (GSK3ß), ß-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM samples, which was reported to be upregulated through inhibition of GSK3ß, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3ß, ß-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 µM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3ß/ß-Catenin/STAT3/CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.


Assuntos
Biologia Computacional/métodos , Glioblastoma/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Receptores de Hialuronatos/antagonistas & inibidores , Niclosamida/química , Fator de Transcrição STAT3/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Células Tumorais Cultivadas
2.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31463571

RESUMO

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Assuntos
Neoplasias Encefálicas/metabolismo , Distroglicanas/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/cirurgia , Transformação Celular Neoplásica , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glioma/irrigação sanguínea , Glioma/cirurgia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias
3.
Cancers (Basel) ; 16(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38254845

RESUMO

Glioblastoma, the deadliest adult brain tumor, poses a significant therapeutic challenge with a dismal prognosis despite current treatments. Zonulin, a protein influencing tight junctions and barrier functions, has gained attention for its diverse roles in various diseases. This study aimed to preliminarily analyze the circulating and tumor zonulin levels, evaluating their impact on disease prognosis and clinical-radiological factors. Additionally, we investigated in vitro zonulin expression in different glioblastoma cell lines under two different conditions. The study comprised 34 newly diagnosed glioblastoma patients, with blood samples collected before treatment for zonulin and haptoglobin analysis. Tumor tissue samples from 21 patients were obtained for zonulin expression. Clinical, molecular, and radiological data were collected, and zonulin protein levels were assessed using ELISA and Western blot techniques. Furthermore, zonulin expression was analyzed in vitro in three glioblastoma cell lines cultured under standard and glioma-stem-cell (GSC)-specific conditions. High zonulin expression in glioblastoma tumors correlated with larger preoperative contrast enhancement and edema volumes. Patients with high zonulin levels showed a poorer prognosis (progression-free survival [PFS]). Similarly, elevated serum levels of zonulin were associated with a trend of shorter PFS. Higher haptoglobin levels correlated with MGMT methylation and longer PFS. In vitro, glioblastoma cell lines expressed zonulin under standard cell culture conditions, with increased expression in tumorsphere-specific conditions. Elevated zonulin levels in both the tumor and serum of glioblastoma patients were linked to a poorer prognosis and radiological signs of increased disruption of the blood-brain barrier. In vitro, zonulin expression exhibited a significant increase in tumorspheres.

4.
Front Neuroinform ; 16: 859937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492076

RESUMO

Objective: In our research we try to explore whether glioma stem cell containing circRNAs signal pathway could regulate glioma malignant progression and elaborate its possible mechanism. Methods: In this study, we used biological information analysis to build an RNA regulatory network and then proceeded RT-PCR to screen target RNAs, after that we clarified the targeting relationship between circRNA-miRNA-mRNA through double luciferase gene assay, RNA pull down experiment, PCR and Western Blot. Finally we adopted RNA transfection to identify its impact on glioma cell proliferation, invasion, migration, apoptosis and cell cycle. Results: circ-ASB3 was significantly up-regulated in glioma stem cells compared with glioma cells. The circ-ASB3/miR-543/Twist1 axis was discovered to be a possible regulatory pathway in glioma, circ-ASB3 could adsorb and targeted bind to miR-543, down-regulate miR-543 expression, thus release its targeted inhibition to Twist1. Circ-ASB3 was shown to increase glioma cell proliferation, invasion, and migration in vitro via miR-543/Twist1 axis. Meanwhile glioma cell apoptosis could be inhibited, and cell cycle arrest could be induced through this signaling pathway. Conclusion: circ-ASB3 could enhance glioma malignancy via miR-543/Twist1 axis, resulting in the discovery of new biomarkers and possible therapeutic targets for these patients.

5.
Front Oncol ; 12: 926025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248966

RESUMO

Background: Glioma stem cells (GSCs) are a sub-population of cancer stem cells with capacity of self-renewal and differentiation. Accumulated evidence has revealed that GSCs were shown to contribute to gliomagenesis, distant metastasis as well as the resistance to radiotherapy and chemotherapy. As a result, GSCs were regarded as a promising therapeutic target in human glioma. The purpose of our study is to identify current state and hotspots of GSCs research by analyzing scientific publications through bibliometric methods. Methods: All relevant publications on GSCs during 2003-2021 were extracted from the Science Citation Index Expanded of Web of Science Core Collection (WoSCC), and related information was collected and analyzed using Microsoft Excel 2016, GraphPad Prism 8 and VOSviewer software. Results: A total of 4990 papers were included. The United States accounted for the largest number of publications (1852), the second average citations per item (ACI) value (67.54) as well as the highest H-index (157). Cancer Research was the most influential journal in this field. The most contributive institution was League of European Research Universities. RICH JN was the author with the most publications (109) and the highest H-index (59). All studies were clustered into 3 groups: "glioma stem cell properties", "cell biological properties" and "oncology therapy". The keywords "identification", "CD133" and "side population" appeared earlier with the smaller average appearing years (AAY), and the keywords"radiotherapy" and "chemotherapy" had the latest AAY. The analysis of top cited articles showed that "temozolomide", "epithelial-mesenchymal transition", and "immunotherapy" emerged as new focused issues. Conclusion: There has been a growing number of researches on GSCs. The United States has always been a leading player in this domain. In general, the research focus has gradually shifted from basic cellular biology to the solutions of clinical concerns. "Temozolomide resistance", "epithelial-mesenchymal transition", and "immunotherapy" should be given more attention in the future.

6.
Cancer Res Commun ; 2(9): 966-978, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36382088

RESUMO

Glioblastoma (GBM) is an aggressive and incurable brain tumor in nearly all instances, whose disease progression is driven in part by the glioma stem cell (GSC) subpopulation. Here, we explored the effects of Schlafen family member 11 (SLFN11) in the molecular, cellular and tumor biology of GBM. CRISPR/Cas9 mediated knockout (KO) of SLFN11 inhibited GBM cell proliferation and neurosphere growth and was associated with reduced expression of progenitor/stem cell marker genes, such as NES, SOX2 and CD44. Loss of SLFN11 stimulated expression of NF-κB target genes, consistent with a negative regulatory role for SLFN11 on the NF-κB pathway. Further, our studies identify p21 as a direct transcriptional target of NF-κB2 in GBM whose expression was stimulated by loss of SLFN11. Genetic disruption of SLFN11 blocked GBM growth and significantly extended survival in an orthotopic patient-derived xenograft model. Together, our results identify SLFN11 as a novel component of signaling pathways that contribute to GBM and GSC with implications for future diagnostic and therapeutic strategies.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , NF-kappa B/genética , Linhagem Celular Tumoral , Transdução de Sinais/genética , Proteínas Nucleares/metabolismo
7.
Cells ; 9(3)2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183406

RESUMO

Constitutively activated STAT3 plays an essential role in the initiation, progression, maintenance, malignancy, and drug resistance of cancer, including glioblastoma, suggesting that STAT3 is a potential therapeutic target for cancer therapy. We recently identified ODZ10117 as a small molecule inhibitor of STAT3 and suggested that it may have an effective therapeutic utility for the STAT3-targeted cancer therapy. Here, we demonstrated the therapeutic efficacy of ODZ10117 in glioblastoma by targeting STAT3. ODZ10117 inhibited migration and invasion and induced apoptotic cell death by targeting STAT3 in glioblastoma cells and patient-derived primary glioblastoma cells. In addition, ODZ10117 suppressed stem cell properties in glioma stem cells (GSCs). Finally, the administration of ODZ10117 showed significant therapeutic efficacy in mouse xenograft models of GSCs and glioblastoma cells. Collectively, ODZ10117 is a promising therapeutic candidate for glioblastoma by targeting STAT3.


Assuntos
Glioblastoma/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/mortalidade , Humanos , Camundongos , Fator de Transcrição STAT3/uso terapêutico , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 10(24): 2397-2415, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31040930

RESUMO

Glioblastoma resists chemotherapy then recurs as a fatal space-occupying lesion. To improve the prognosis, the issues of chemoresistance and tumor size should be addressed. Glioma stem cell (GSC) populations, a heterogeneous power-law coded population in glioblastoma, are believed to be responsible for the recurrence and progressive expansion of tumors. Thus, we propose a therapeutic strategy of reducing the initial size and controlling the regrowth of GSC populations which directly facilitates initial and long-term control of glioblastoma recurrence. In this study, we administered an anti-glioma/GSC drug temozolomide (TMZ) and OTS964, an inhibitor for T-Lak cell originated protein kinase, in combination (T&O), investigating whether together they efficiently and substantially shrink the initial size of power-law coded GSC populations and slow the long-term re-growth of drug-resistant GSC populations. We employed a detailed quantitative approach using clonal glioma sphere (GS) cultures, measuring sphere survivability and changes to growth during the self-renewal. T&O eliminated self-renewing GS clones and suppressed their growth. We also addressed whether T&O reduced the size of self-renewed GS populations. T&O quickly reduced the size of GS populations via efficient elimination of GS clones. The growth of the surviving T&O-resistant GS populations was continuously disturbed, leading to substantial long-term shrinkage of the self-renewed GS populations. Thus, T&O reduced the initial size of GS populations and suppressed their later regrowth. A combination therapy of TMZ and OTS964 would represent a novel therapeutic paradigm with the potential for long-term control of glioblastoma recurrence via immediate and sustained shrinkage of power-law coded heterogeneous GSC populations.

9.
Oncotarget ; 9(3): 3043-3059, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423027

RESUMO

Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964.

10.
Transl Cancer Res ; 6(Suppl 2): S321-S327, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30662831

RESUMO

It remains incumbent on researchers to conceive novel treatments for the most common primary malignancy of the brain in adults, glioblastoma multiforme (GBM), as the standard of care for patients today fails to yield a median survival beyond two years following diagnosis. Recent studies have tended towards appreciating the cellular heterogeneity of GBM tumors, focusing on the subpopulation of highly plastic glioblastoma stem cells (GSCs). In the November 2016 issue of Cell, Hu and colleagues developed a de nova GBM model derived from immortalized neural stem cells and, using this model, they demonstrated that GSCs can generate CD133+/CD144+ cells with endothelial cell-like characteristics. Contrasts between the epigenetic state and gene expression level before and after oncogenic transformation of this utilized de novo model for GBM implicated WNT5A, which has been previously shown to play a role in endothelial cell proliferation and migration via non-canonical Wnt signaling, as a mediator of the process. The transdifferentiation was accompanied by alterations in the histone marks at the gene loci of WNT5A, and its transcription factors PAX6 and DXL5. The authors hypothesize that activation of AKT, an aberration of the RTK/PTEN/PI3K pathway observed in the majority of GBM cases, triggers these epigenetic changes causing WNT5A expression. This phenomenon is of obvious clinical significance, as it provides an insight into how GBM may circumvent therapies targeting angiogenesis to achieve the neovascularization required to sustain invasive growth. The unveiling of this atypical differentiation process also raises questions about its interaction with the radiotherapy and chemotherapy commonly used to counter GBM progression. Here, we review the recent efforts to understand the complex mechanisms behind the plasticity of GSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA