Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurosurg Focus ; 52(2): E4, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104793

RESUMO

OBJECTIVE: Glioma-associated stem cells (GASCs) have been indicated as possible players in supporting growth and recurrence in glioblastoma. However, their role in modulating immune response in the peritumoral area has not yet been described. In this study, the authors aimed to investigate programmed death-ligand 1 (PD-L1) differential expression at the protein level in GASCs derived from different tumor areas (core, periphery, and surrounding healthy brain). METHODS: Tumor tissue samples were collected from patients who underwent surgery for a histopathologically confirmed diagnosis of glioblastoma. Sampling sites were confirmed via neuronavigation and categorized on 5-aminolevulinic acid (5-ALA) fluorescence as bright (ALA+), pale (ALA PALE), or negative (ALA-), which corresponds to the tumor mass, infiltrated peritumoral area, and healthy brain, respectively, during surgery. GASCs were first isolated from the 3 regions and analyzed; then Western blot analysis was used to evaluate the level of PD-L1 expression in the GASCs. RESULTS: Overall, 7 patients were included in the study. For all patients, the mean values ± SD of PD-L1 expression in GASCs for ALA+, ALA PALE, and ALA- were 1.12 ± 1.14, 0.89 ± 0.63, and 0.57 ± 0.18, respectively. The differentially expressed values of PD-L1 in GASCs sampled from the 3 areas were found to be significant (p < 0.05) for 3 of the 7 patients: patient S470 (ALA+ vs ALA- and ALA PALE vs ALA-), patient S473 (ALA+ vs ALA PALE and ALA PALE vs ALA-), and patient S509 (ALA+ vs ALA-). CONCLUSIONS: This analysis showed, for the first time, that GASCs expressed a constitutive level of PD-L1 and that PD-L1 expression in GASCs was not uniform among patients or within the same patient. GASC analysis combined with 5-ALA-guided sampling (from core to periphery) made it possible to highlight the role of the tumor microenvironment at the infiltrating margin, which might cause clinical resistance, opening interesting perspectives for the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Antígeno B7-H1/metabolismo , Glioblastoma/cirurgia , Glioma/patologia , Glioma/cirurgia , Humanos , Imunidade , Células-Tronco , Microambiente Tumoral
2.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300332

RESUMO

The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Modelos Biológicos , Microambiente Tumoral , Comunicação Celular , Humanos , Invasividade Neoplásica
3.
Stem Cells ; 32(5): 1239-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375787

RESUMO

BACKGROUND: Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. METHODS AND FINDINGS: We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. CONCLUSIONS: The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Proliferação de Células , Exossomos/metabolismo , Feminino , Expressão Gênica , Glioma/genética , Glioma/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia de Força Atômica , Microscopia de Fluorescência , Pessoa de Meia-Idade , Análise Multivariada , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
4.
Cancers (Basel) ; 12(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066172

RESUMO

The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA-) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA- samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA