Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(12): 4337-4354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932427

RESUMO

The placenta and tumors can exhibit a shared expression profile of proto-oncogenes. The basis of placenta-derived heat shock protein gp96, which induces prophylactic and therapeutic T cell responses against cancer including hepatocellular carcinoma (HCC), remains unknown. Here, we identified the associated long peptides from human placental gp96 using matrix-assisted laser desorption/ionization-time-of-flight and mass spectrometry and analyzed the achieved proteins through disease enrichment analysis. We found that placental gp96 binds to numerous peptides derived from 73 proteins that could be enriched in multiple cancer types. Epitope-harboring peptides from glypican 3 (GPC3) and paternally expressed gene 10 (PEG10) were the major antigens mediating anti-HCC T cell immunity. Molecular docking analysis showed that the GPC3- and PEG10-derived peptides, mainly obtained from the cytotrophoblast layer of the mature placenta, bind to the lumenal channel and client-bound domain of the gp96 dimer. Immunization with bone marrow-derived dendritic cells pulsed with recombinant gp96-GPC3 or recombinant gp96-PEG10 peptide complex induced specific T cell responses, and T cell transfusion led to pronounced growth inhibition of HCC tumors in nude mice. We demonstrated that the chaperone gp96 can capture antigenic peptides as an efficient approach for defining tumor rejection oncoantigens in the placenta and provide a basis for developing GPC3 and PEG10 peptide-based vaccines against HCC. This study provides insight into the underlying mechanism of the antitumor response mediated by embryonic antigens from fetal tissues, and this will incite more studies to identify potential tumor rejection antigens from placenta.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Feminino , Humanos , Camundongos , Gravidez , Antígenos de Neoplasias , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/terapia , Proteínas de Ligação a DNA/metabolismo , Glipicanas , Neoplasias Hepáticas/terapia , Camundongos Nus , Simulação de Acoplamento Molecular , Peptídeos , Placenta/metabolismo , Proteínas de Ligação a RNA
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768601

RESUMO

Heat shock proteins (hsps), in certain circumstances, could shape unique features of decidual dendritic cells (DCs) that play a key role in inducing immunity as well as maintaining tolerance. The aim of the study was to assess the binding of gp96 to Toll-like receptor (TLR) 4 and CD91 receptors on decidual CD1a+ DCs present at the maternal-fetal interface in vitro as well as the influence of CD1a+ DCs maturation status. Immunohistology and immunofluorescence of paraffin-embedded first-trimester decidua tissue sections of normal and pathological (missed abortion MA and blighted ovum BO) pregnancies were performed together with flow cytometry detection of antigens in CD1a+ DCs after gp96 stimulation of decidual mononuclear cells. Gp96 efficiently bound CD91 and TLR4 receptors on decidual CD1a+ DCs in a dose-dependent manner and increased the expression of CD83 and HLA-DR. The highest concentration of gp96 (1000 ng/mL) increased the percentage of Interferon-γ (INF-γ) and IL-15 expressing gp96+ cells. Gp96 binds CD91 and TLR4 on decidual CD1a+ DCs, which causes their maturation and significantly increases INF-γ and IL-15 in the context of Th1 cytokine/chemokine domination, which could support immune response harmful for ongoing pregnancy.


Assuntos
Interleucina-15 , Receptor 4 Toll-Like , Feminino , Humanos , Gravidez , Decídua/metabolismo , Células Dendríticas , Antígenos HLA-DR , Interferon gama , Receptor 4 Toll-Like/metabolismo
3.
Med Res Rev ; 42(6): 2007-2024, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861260

RESUMO

The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.


Assuntos
Proteínas de Choque Térmico HSP70 , Glicoproteínas de Membrana , Biologia , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana , Chaperonas Moleculares/metabolismo
4.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827939

RESUMO

Currently, immunization with inactivated influenza virus vaccines is the most prevalent method to prevent infections. However, licensed influenza vaccines provide only strain-specific protection and need to be updated and administered yearly; thus, new vaccines that provide broad protection against multiple influenza virus subtypes are required. In this study, we demonstrated that intradermal immunization with gp96-adjuvanted seasonal influenza monovalent H1N1 split vaccine could induce cross-protection against both group 1 and group 2 influenza A viruses in BALB/c mouse models. Vaccination in the presence of gp96 induced an apparently stronger antigen-specific T cell response than split vaccine alone. Immunization with the gp96-adjuvanted vaccine also elicited an apparent cross-reactive CD8+ T cell response that targeted the conserved epitopes across different influenza virus strains. These cross-reactive CD8+ T cells might be recalled from a pool of memory cells established after vaccination and recruited from extrapulmonary sites to facilitate viral clearance. Of note, six highly conserved CD8+ T epitopes from the viral structural proteins hemagglutinin (HA), M1, nucleoprotein (NP), and PB1 were identified to play a synergistic role in gp96-mediated cross-protection. Comparative analysis showed that most of conservative epitope-specific cytotoxic T lymphocytes (CTLs) apparently induced by heterologous virus infection were also activated by gp96-adjuvanted vaccine, thus resulting in broader protective CD8+ T cell responses. Our results demonstrated the advantage of adding gp96 to an existing seasonal influenza vaccine to improve its ability to provide better cross-protection.IMPORTANCE Owing to continuous mutations in hemagglutinin (HA) or neuraminidase (NA) or recombination of the gene segments between different strains, influenza viruses can escape the immune responses developed by vaccination. Thus, new strategies aimed to efficiently activate immune response that targets to conserved regions among different influenza viruses are urgently needed in designing broad-spectrum influenza vaccine. Heat shock protein gp96 is currently the only natural T cell adjuvant with special ability to cross-present coupled antigen to major histocompatibility complex class I (MHC-I) molecule and activate the downstream antigen-specific CTL response. In this study, we demonstrated the advantages of adding gp96 to monovalent split influenza virus vaccine to improve its ability to provide cross-protection in the BALB/c mouse model and proved that a gp96-activated cross-reactive CTL response is indispensable in our vaccine strategy. Due to its unique adjuvant properties, gp96 might be a promising adjuvant for designing new broad-spectrum influenza vaccines.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Glicoproteínas de Membrana/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Proteção Cruzada , Reações Cruzadas , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Heteróloga , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H3N2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/imunologia , Proteínas do Nucleocapsídeo/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas Virais/imunologia
5.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328344

RESUMO

The endoplasmic reticulum (ER) chaperone Grp94/gp96 appears to be involved in cytoprotection without being required for cell survival. This study compared the effects of Grp94 protein levels on Ca2+ homeostasis, antioxidant cytoprotection and protein-protein interactions between two widely studied cell lines, the myogenic C2C12 and the epithelial HeLa, and two breast cancer cell lines, MDA-MB-231 and HS578T. In myogenic cells, but not in HeLa, Grp94 overexpression exerted cytoprotection by reducing ER Ca2+ storage, due to an inhibitory effect on SERCA2. In C2C12 cells, but not in HeLa, Grp94 co-immunoprecipitated with non-client proteins, such as nNOS, SERCA2 and PMCA, which co-fractionated by sucrose gradient centrifugation in a distinct, medium density, ER vesicular compartment. Active nNOS was also required for Grp94-induced cytoprotection, since its inhibition by L-NNA disrupted the co-immunoprecipitation and co-fractionation of Grp94 with nNOS and SERCA2, and increased apoptosis. Comparably, only the breast cancer cell line MDA-MB-231, which showed Grp94 co-immunoprecipitation with nNOS, SERCA2 and PMCA, increased oxidant-induced apoptosis after nNOS inhibition or Grp94 silencing. These results identify the Grp94-driven multiprotein complex, including active nNOS as mechanistically involved in antioxidant cytoprotection by means of nNOS activity and improved Ca2+ homeostasis.


Assuntos
Neoplasias da Mama , Citoproteção , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Feminino , Humanos
6.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295911

RESUMO

Human herpesviruses 6A and 6B (HHV-6A and HHV-6B, respectively) are two virus species in the betaherpesvirus subfamily that exhibit T cell tropism. CD46 and CD134 are the cellular receptors for HHV-6A and HHV-6B, respectively. Interestingly, the efficiency of HHV-6A/6B entry is different among different types of target cells despite similar receptor expression levels on these cells. Here, we found that the cellular factor gp96 (also known as glucose-regulated protein 94 [GRP94]) is expressed on the cell surface and interacts with viral glycoprotein Q1 (gQ1) during virus entry. gp96 cell surface expression levels are associated with the efficiency of HHV-6A and HHV-6B entry into target cells. Both loss-of-function and gain-of-function experiments indicated that gp96 plays an important role in HHV-6 infection. Our findings provide new insight into the HHV-6 entry process and might suggest novel therapeutic targets for HHV-6 infection.IMPORTANCE Although new clinical importance has been revealed for human herpesviruses 6A (HHV-6A) and 6B, much is still unknown about the life cycles of these viruses in target cells. We identified a novel cellular factor, gp96, that is critical for both HHV-6A and -6B entry into host cells. As gp96 can function as an adjuvant in vaccine development for both infectious agents and cancers, it can be a potential therapeutic target for infection by these two viruses.


Assuntos
Herpesvirus Humano 6/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular , Sangue Fetal/metabolismo , Herpesvirus Humano 6/patogenicidade , Humanos , Glicoproteínas de Membrana/genética , Cultura Primária de Células , Ligação Proteica , Infecções por Roseolovirus/virologia , Linfócitos T/virologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769220

RESUMO

Curcumin administration attenuates muscle disuse atrophy, but its effectiveness against aging-induced, selective loss of mass or force (presarcopenia or asthenia/dynopenia), or combined loss (sarcopenia), remains controversial. A new systemic curcumin treatment was developed and tested in 18-month-old C57BL6J and C57BL10ScSn male mice. The effects on survival, liver toxicity, loss of muscle mass and force, and satellite cell responsivity and commitment were evaluated after 6-month treatment. Although only 24-month-old C57BL10ScSn mice displayed age-related muscle impairment, curcumin significantly increased survival of both strains (+20-35%), without signs of liver toxicity. Treatment prevented sarcopenia in soleus and presarcopenia in EDL of C57BL10ScSn mice, whereas it did not affect healthy-aged muscles of C57BL6J. Curcumin-treated old C57BL10ScSn soleus preserved type-1 myofiber size and increased type-2A one, whereas EDL maintained adult values of total myofiber number and fiber-type composition. Mechanistically, curcumin only partially prevented the age-related changes in protein level and subcellular distribution of major costamere components and regulators. Conversely, it affected satellite cells, by maintaining adult levels of myofiber maturation in old regenerating soleus and increasing percentage of isolated, MyoD-positive satellite cells from old hindlimb muscles. Therefore, curcumin treatment successfully prevents presarcopenia and sarcopenia development by improving satellite cell commitment and recruitment.


Assuntos
Envelhecimento , Curcumina/farmacologia , Músculo Esquelético , Sarcopenia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patologia
8.
J Cell Mol Med ; 24(24): 14426-14440, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33155438

RESUMO

Human cytomegalovirus (HCMV) infection in the respiratory tract leads to pneumonitis in immunocompromised hosts without available vaccine. Considering cytomegalovirus (CMV) mainly invades through the respiratory tract, CMV-specific pulmonary mucosal vaccine development that provides a long-lasting protection against CMV challenge gains our attention. In this study, N-terminal domain of GP96 (GP96-NT) was used as a mucosal adjuvant to enhance the induction of pulmonary-resident CD8 T cells elicited by MCMV glycoprotein B (gB) vaccine. Mice were intranasally co-immunized with 50 µg pgB and equal amount of pGP96-NT vaccine 4 times at 2-week intervals, and then i.n. challenged with MCMV at 16 weeks after the last immunization. Compared with pgB immunization alone, co-immunization with pgB/pGP96-NT enhanced a long-lasting protection against MCMV pneumonitis by significantly improved pneumonitis pathology, enhanced bodyweight, reduced viral burdens and increased survival rate. Moreover, the increased CD8 T cells were observed in lung but not spleen from pgB/pGP96-NT co-immunized mice. The increments of pulmonary CD8 T cells might be mainly due to non-circulating pulmonary-resident CD8 T-cell subset expansion but not circulating CD8 T-cell populations that home to inflammation site upon MCMV challenge. Finally, the deterioration of MCMV pneumonitis by depletion of pulmonary site-specific CD8 T cells in mice that were pgB/pGP96-NT co-immunization might be a clue to interpret the non-circulating pulmonary-resident CD8 T subset expansion. These data might uncover a promising long-lasting prophylactic vaccine strategy against MCMV-induced pneumonitis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Pneumonia/imunologia , Pneumonia/virologia , Proteínas Virais/imunologia , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunização , Memória Imunológica , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/imunologia , Camundongos , Plasmídeos/genética , Baço/imunologia , Baço/patologia , Vacinação , Vacinas de DNA/imunologia , Vacinas Virais/imunologia
9.
J Biol Chem ; 294(44): 16010-16019, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501246

RESUMO

The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90ß, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.


Assuntos
Adenosina-5'-(N-etilcarboxamida)/farmacologia , Glicoproteínas de Membrana/química , Simulação de Acoplamento Molecular , Adenosina-5'-(N-etilcarboxamida)/análogos & derivados , Regulação Alostérica , Sítios de Ligação , Humanos , Glicoproteínas de Membrana/metabolismo , Ligação Proteica
10.
J Gen Virol ; 100(8): 1241-1252, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31204972

RESUMO

In hepatitis B virus (HBV) infection, the virus produces redundant hepatitis B surface antigen (HBsAg) that plays a key role in driving T-cell tolerance and viral persistence. However, currently available anti-HBV agents have no direct effect on HBsAg transcription and protein expression. In this study, we designed a heat shock protein gp96 inhibitor p37 with the cell penetrating peptide PTD (protein transduction domain of trans-activator of transcription), which mediated p37 internalization into hepatocytes. PTD-p37 effectively suppressed HBsAg expression and viral replication both in vitro and in vivo. We further provide evidence that PTD-p37 suppressed HBV enhancer/promoter activity via p53 upregulation. Moreover, PTD-p37 had antiviral activity against a lamivudine-resistant HBV strain. Considering that suppression of HBsAg expression is a major goal for treatment of HBV infection, our results provide a basis for developing a new therapeutic approaches targeting host factors against viral expression.


Assuntos
Antivirais/farmacologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Hepatite B/genética , Glicoproteínas de Membrana/antagonistas & inibidores , Peptídeos/farmacologia , Proteína Supressora de Tumor p53/genética , Animais , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
11.
J Pathol ; 246(4): 433-446, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30066461

RESUMO

Skeletal muscle atrophy following unloading or immobilization represents a major invalidating event in bedridden patients. Among mechanisms involved in atrophy development, a controversial role is played by neuronal NOS (nNOS; NOS1), whose dysregulation at the protein level and/or subcellular distribution also characterizes other neuromuscular disorders. This study aimed to investigate unloading-induced changes in nNOS before any evidence of myofiber atrophy, using vastus lateralis biopsies obtained from young healthy subjects after a short bed-rest and rat soleus muscles after exposure to short unloading periods. Our results showed that (1) changes in nNOS subcellular distribution using NADPH-diaphorase histochemistry to detect enzyme activity were observed earlier than using immunofluorescence to visualize the protein; (2) loss of active nNOS from the physiological subsarcolemmal localization occurred before myofiber atrophy, i.e. in 8-day bed-rest biopsies and in 6 h-unloaded rat soleus, and was accompanied by increased nNOS activity in the sarcoplasm; (3) nNOS (Nos1) transcript and protein levels decreased significantly in the rat soleus after 6 h and 1 day unloading, respectively, to return to ambulatory levels after 4 and 7 days of unloading, respectively; (4) unloading-induced nNOS redistribution appeared dependent on mitochondrial-derived oxidant species, indirectly measured by tropomyosin disulfide bonds which had increased significantly in the rat soleus already after a 6 h-unloading bout; (5) activity of displaced nNOS molecules is required for translocation of the FoxO3 transcription factor to myofiber nuclei. FoxO3 nuclear localization in rat soleus increased after 6 h unloading (about four-fold the ambulatory level), whereas it did not when nNOS expression and activity were inhibited in vivo before and during 6 h unloading. In conclusion, this study demonstrates that the redistribution of active nNOS molecules from sarcolemma to sarcoplasm not only is ahead of the atrophy of unloaded myofibers, and is induced by increased production of mitochondrial superoxide anion, but also drives FoxO3 activation to initiate muscle atrophy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Atrofia Muscular/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Músculo Quadríceps/enzimologia , Sarcolema/enzimologia , Animais , Repouso em Cama , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Proteína Forkhead Box O3/metabolismo , Voluntários Saudáveis , Elevação dos Membros Posteriores , Humanos , Masculino , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , NADP/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Transporte Proteico , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia , Ratos Wistar , Sarcolema/patologia , Superóxidos/metabolismo , Fatores de Tempo
12.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108847

RESUMO

Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.


Assuntos
Benzoquinonas/farmacologia , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Lactamas Macrocíclicas/farmacologia , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ciclofilinas/química , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Monócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteólise , Receptores de Interleucina/química , Receptores de Interleucina/genética
13.
J Biol Chem ; 292(16): 6657-6666, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28275054

RESUMO

Drosophila gp93 was identified as the ortholog of the mammalian endoplasmic reticulum-resident chaperone gp96. gp93 was found capable of rescuing gp96 client proteins, such as Toll-like receptors (TLRs) and integrins, in a gp96-deficient murine cell line. Mammalian gp96 was further found to require the cochaperone canopy 3 (CNPY3) for proper folding and expression of TLRs, but not integrins. In Drosophila, two possible CNPY family members have been identified but have not yet been characterized. Therefore, we sought to determine the role of Drosophila CNPYa and CNPYb in gp93 biology. Because of higher similarities between CNPY3 and CNPYb, we postulated that CNPYb would be a TLR-specific cochaperone of gp93. Indeed, CNPYb addition in gp93-expressing cells improved TLR expression. CNPYb and gp93 were further found to physically interact. Mutational analysis of cysteine residues in CNPYb identified differential dependence of these cysteines in chaperone function. Our study is the first to characterize Drosophila CNPY molecules. We further uncover more gp93 biology by identifying CNPYb as a cochaperone. A better understanding of this simpler Drosophila system will enable application to the mammalian system, such as has been done with Escherichia coli, yeast, and mammalian HSP90.


Assuntos
Proteínas de Drosophila/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Linhagem Celular , Cisteína/química , Análise Mutacional de DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Multimerização Proteica , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
14.
J Pathol ; 238(1): 74-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26365983

RESUMO

Klebsiella pneumoniae is among the most common Gram-negative bacteria that cause pneumonia. Gp96 is an endoplasmic reticulum chaperone that is essential for the trafficking and function of Toll-like receptors (TLRs) and integrins. To determine the role of gp96 in myeloid cells in host defence during Klebsiella pneumonia, mice homozygous for the conditional Hsp90b1 allele encoding gp96 were crossed with mice expressing Cre-recombinase under control of the LysM promoter to generate LysMcre-Hsp90b1-flox mice. LysMcre-Hsp90b1-flox mice showed absence of gp96 protein in macrophages and partial depletion in monocytes and granulocytes. This was accompanied by almost complete absence of TLR2 and TLR4 on macrophages. Likewise, integrin subunits CD11b and CD18 were not detectable on macrophages, while being only slightly reduced on monocytes and granulocytes. Gp96-deficient macrophages did not release pro-inflammatory cytokines in response to Klebsiella and displayed reduced phagocytic capacity independent of CD18. LysMcre-Hsp90b1-flox mice were highly vulnerable to lower airway infection induced by K. pneumoniae, as reflected by enhanced bacterial growth and a higher mortality rate. The early inflammatory response in Hsp90b1-flox mice was characterized by strongly impaired recruitment of granulocytes into the lungs, accompanied by attenuated production of pro-inflammatory cytokines, while the inflammatory response during late-stage pneumonia was not dependent on the presence of gp96. Blocking CD18 did not reproduce the impaired host defence of LysMcre-Hsp90b1-flox mice during Klebsiella pneumonia. These data indicate that macrophage gp96 is essential for protective immunity during Gram-negative pneumonia by regulating TLR expression.


Assuntos
Infecções por Klebsiella/imunologia , Glicoproteínas de Membrana/imunologia , Pneumonia Bacteriana/imunologia , Animais , Western Blotting , Modelos Animais de Doenças , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Klebsiella pneumoniae , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/imunologia , Reação em Cadeia da Polimerase
15.
Bratisl Lek Listy ; 118(9): 564-569, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29061065

RESUMO

BACKGROUND: DNA immunization can induce long-term immune responses, which are required to design an effective HIV vaccine. It was shown that antigen-expressing plasmids can increase the protective immunity against infectious diseases such as: influenza and malaria. However, DNA-based immunizations have poor immunogenicity, thus the use of potent immunoadjuvants can enhance their potency. METHODS: In the current study, preparation of the recombinant HIV-1 Nef, Gp96 and HMGB1 DNA constructs was performed in bacterial system. Then, the immunogenicity of DNA construct harboring HIV-1 Nef gene (pcDNA-Nef) was studied using two endogenous adjuvants (pcDNA-HMGB1 and pcDNA-Gp96) in BALB/c mouse model. RESULTS: Our data showed that co-injection of pcDNA-Nef with pcDNA-HMGB1 effectively raised both humoral and cell-mediated immune responses in mice as compared to pcDNA-Nef adjuvanted with pcDNA-gp96. Indeed, co-immunization of HIV-1 Nef DNA with HMGB1 DNA significantly induced high levels of IgG2a and IFN-γ directed toward Th1 responses and also cytotoxic T lymphocytes (CTLs) activity in comparison with other immunized groups. CONCLUSION: These findings suggest that the full length of HMGB1 gene could be a more efficient adjuvant for improvement of therapeutic HIV DNA-based immunization compared to the full length of gp96 gene (Tab. 1, Fig. 3, Ref. 58).


Assuntos
Vacinas contra a AIDS/farmacologia , Adjuvantes Imunológicos/farmacologia , HIV-1/imunologia , Imunogenicidade da Vacina/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Vacinas de DNA/farmacologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Feminino , Proteína HMGB1/imunologia , Imunoglobulina G/efeitos dos fármacos , Imunoglobulina G/imunologia , Interferon gama/efeitos dos fármacos , Interferon gama/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Vacinas de DNA/imunologia
16.
Biochem Biophys Res Commun ; 478(1): 417-423, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27392712

RESUMO

HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant.


Assuntos
Transformação Celular Viral/imunologia , Papillomavirus Humano 16/fisiologia , Imunidade Inata/imunologia , Queratinócitos/imunologia , Queratinócitos/virologia , Proteoma/imunologia , Células Cultivadas , Citocinas/imunologia , Regulação Viral da Expressão Gênica/imunologia , Papillomavirus Humano 16/classificação , Papillomavirus Humano 16/isolamento & purificação , Humanos , Especificidade da Espécie
17.
Int J Cancer ; 137(3): 512-24, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25546612

RESUMO

HER2 receptor dimerization is a critical step in the HER2 activation process. Here, we demonstrated that heat shock protein gp96 on cell membrane interacts with HER2, facilitates HER2 dimerization and promotes cell proliferation. Cell membrane gp96 levels were observed to correlate with HER2 phosphorylation in primary breast tumors. Finally, we provide evidence that targeting gp96 with a specific monoclonal antibody led to decreased cell growth and increased apoptosis in vitro, and suppression of tumor growth in vivo. Our work represents a new therapeutic strategy for inhibiting HER2 signaling in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Glicoproteínas de Membrana/metabolismo , Multimerização Proteica , Receptor ErbB-2/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Isoenxertos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Receptor ErbB-2/genética , Transdução de Sinais , Carga Tumoral
18.
J Hepatol ; 62(4): 879-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25463537

RESUMO

BACKGROUND & AIMS: gp96, or grp94, is an endoplasmic reticulum (ER)-localized heat shock protein 90 paralog that acts as a protein chaperone and plays an important role for example in ER homeostasis, ER stress, Wnt and integrin signaling, and calcium homeostasis, which are vital processes in oncogenesis. However, the cancer-intrinsic function of gp96 remains controversial. METHODS: We studied the roles of gp96 in liver biology in mice via an Albumin promoter-driven Cre recombinase-mediated disruption of gp96 gene, hsp90b1. The impact of gp96 status on hepatic carcinogenesis in response to diethyl-nitrosoamine (DENA) was probed. The roles of gp96 on human hepatocellular carcinoma cells (HCC) were also examined pharmacologically with a targeted gp96 inhibitor. RESULTS: We demonstrated that gp96 maintains liver development and hepatocyte function in vivo, and its loss genetically promotes adaptive accumulation of long chain ceramides, accompanied by steatotic regeneration of residual gp96+ hepatocytes. The need for compensatory expansion of gp96+ cells in the gp96- background predisposes mice to develop carcinogen-induced hepatic hyperplasia and cancer from gp96+ but not gp96- hepatocytes. We also found that genetic and pharmacological inhibition of gp96 in human HCCs perturbed multiple growth signals, and attenuated proliferation and expansion. CONCLUSIONS: gp96 is a pro-oncogenic chaperone and an attractive therapeutic target for HCC.


Assuntos
Carcinogênese , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Alquilantes/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Dietilnitrosamina/farmacologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Modelos Animais , Chaperonas Moleculares/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
J Biol Chem ; 288(25): 18243-8, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23671277

RESUMO

Integrins play important roles in regulating a diverse array of cellular functions crucial to the initiation, progression, and metastasis of tumors. Previous studies have shown that a majority of integrins are folded by the endoplasmic reticulum chaperone gp96. Here, we demonstrate that the dimerization of integrin αL and ß2 is highly dependent on gp96. The αI domain (AID), a ligand binding domain shared by seven integrin α-subunits, is a critical region for integrin binding to gp96. Deletion of AID significantly reduced the interaction between integrin αL and gp96. Overexpression of AID intracellularly decreased surface expression of gp96 clients (integrins and Toll-like receptors) and cancer cell invasion. The α7 helix region is crucial for AID binding to gp96. A cell-permeable α7 helix peptide competitively inhibited the interaction between gp96 and integrins and blocked cell invasion. Thus, targeting the binding site of α7 helix of AID on gp96 is potentially a new strategy for treatment of cancer metastasis.


Assuntos
Antígeno CD11a/metabolismo , Antígenos CD18/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Sítios de Ligação/genética , Antígeno CD11a/química , Antígeno CD11a/genética , Antígenos CD18/química , Antígenos CD18/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Células HCT116 , Humanos , Immunoblotting , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/genética , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Interferência de RNA
20.
Front Immunol ; 14: 1130054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056783

RESUMO

Introduction: A highly efficacious and durable vaccine against malaria is an essential tool for global malaria eradication. One of the promising strategies to develop such a vaccine is to induce robust CD8+ T cell mediated immunity against malaria liver-stage parasites. Methods: Here we describe a novel malaria vaccine platform based on a secreted form of the heat shock protein, gp96-immunoglobulin, (gp96-Ig) to induce malaria antigen specific, memory CD8+ T cells. Gp96-Ig acts as an adjuvant to activate antigen presenting cells (APCs) and chaperone peptides/antigens to APCs for cross presentation to CD8+ T cells. Results: Our study shows that vaccination of mice and rhesus monkeys with HEK-293 cells transfected with gp96-Ig and two well-known Plasmodium falciparum CSP and AMA1 (PfCA) vaccine candidate antigens, induces liver-infiltrating, antigen specific, memory CD8+ T cell responses. The majority of the intrahepatic CSP and AMA1 specific CD8+ T cells expressed CD69 and CXCR3, the hallmark of tissue resident memory T cells (Trm). Also, we found intrahepatic, antigen-specific memory CD8+ T cells secreting IL-2, which is relevant for maintenance of effective memory responses in the liver. Discussion: Our novel gp96-Ig malaria vaccine strategy represents a unique approach to induce liver-homing, antigen-specific CD8+ T cells critical for Plasmodium liver-stage protection.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Proteínas de Choque Térmico/metabolismo , Células HEK293 , Linfócitos T CD8-Positivos , Imunoglobulinas/metabolismo , Antígenos de Protozoários , Malária/prevenção & controle , Malária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA