Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(8): 7862-7876, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39194683

RESUMO

Water pollution remains a major environmental concern, with increased toxic by-products being released into water bodies. Many of these chemical contaminants persist in the environment and bio-accumulate in aquatic organisms. At present, toxicological tests are mostly based on laboratory tests, and effective methods for monitoring wild aquatic environments remain lacking. In the present study, we used a well-characterized toxic chemical, 3,3',4,4',5-polychlorinated biphenyl (PCB126), as an example to try to identify common biomarker genes to be used for predictive toxicity of this toxic substance. First, we used two laboratory fish models, the zebrafish (Danio rerio) and medaka (Oryzias latipes), to expose PCB126 to obtain liver transcriptomic data by RNA-seq. Comparative transcriptomic analyses indicated generally conserved and concerted changes from the two species, thus validating the transcriptomic data for biomarker gene selection. Based on the common up- and downregulated genes in the two species, we selected nine biomarker genes to further test in other fish species. The first validation experiment was carried out using the third fish species, Mozambique tilapia (Oreochromis mossambicus), and essentially, all these biomarker genes were validated for consistent responses with the two laboratory fish models. Finally, to develop universal PCR primers suitable for potentially all teleost fish species, we designed degenerate primers and tested them in the three fish species as well as in another fish species without a genomic sequence available: guppy (Poecilia reticulata). We found all the biomarker genes showed consistent response to PCB126 exposure in at least 50% of the species. Thus, our study provides a promising strategy to identify common biomarker genes to be used for teleost fish analyses. By using degenerate PCR primers and analyzing multiple biomarker genes, it is possible to develop diagnostic PCR arrays to predict water contamination from any wild fish species sampled in different water bodies.

2.
Horm Behav ; 166: 105635, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303528

RESUMO

How an organism responds to risk depends on how that individual perceives such risk. Integrating cues from multiple sensory modalities allows individuals to extract information from their environment, and whether and how the brain and body respond differently to different sensory cues can help reveal mechanistic decision-making processes. Here, we assessed neural, hormonal, and behavioral responses to different sensory cues of predation risk in Trinidadian guppies (Poecilia reticulata). Adult guppies were assigned to one of four treatment groups: control, visual, olfactory, and both sensory cues combined from a natural predator, the pike cichlid (Crenicichla alta), for 2 h. We found no difference in glucocorticoid response to any cue. However, we found behavioral and neural activation responses to olfactory-only cues. In addition, we found a sex by treatment effect, where males showed greater changes in neural activation in brain regions associated with avoidance behavior, while females showed greater changes in neural activation in regions associated with social behavior and memory, mirroring sex by treatment differences in behavioral antipredator responses. Altogether, our results demonstrate that single and combinatory cues may influence risk-taking behavior differently based on sex, suggesting that perception and integration of cues can cascade into sex differences in behavior.

3.
J Toxicol Environ Health A ; 87(3): 120-132, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37969104

RESUMO

There is a growing concern regarding the adverse risks exposure to cylindrospermopsin (CYN) might exert on animals and humans. However, data regarding the toxicity of this cyanotoxin to neotropical fish species are scarce. Using the fish species Poecilia reticulata, the influence of CYN concentrations equal to and above the tolerable for drinking water may produce on liver was determined by assessing biomarkers of antioxidant defense mechanisms and correlated to qualitative and semiquantitative histopathological observations. Adult females were exposed to 0.0 (Control); 0.5, 1 and 1.5 µg/L pure CYN for 24 or 96 hr, in triplicate. Subsequently the livers were extracted for biochemical assays and histopathological evaluation. Catalase (CAT) activity was significantly increased only by 1.5 µg/L CYN-treatment, at both exposure times. Glutathione -S-transferase (GST) activity presented a biphasic response for both exposure times. It was markedly decreased after exposure by 0.5 µg/L CYN treatment but significantly elevated by 1.5 µg/L CYN treatment. All CYN treatments produced histopathological alterations, as evidenced by hepatocyte cords degeneration, steatosis, inflammatory infiltration, melanomacrophage centers, vessel congestion, and areas with necrosis. Further, an IORG >35 was achieved for all treatments, indicative of the presence of severe histological alterations in P. reticulata hepatic parenchyma and stroma. Taken together, data demonstrated evidence that CYN-induced hepatotoxicity in P. reticulata appears to be associated with an imbalance of antioxidant defense mechanisms accompanied by histopathological liver alterations. It is worthy to note that exposure to low environmentally-relevant CYN concentrations might constitute a significant risk to health of aquatic organisms.


Assuntos
Toxinas Bacterianas , Poecilia , Animais , Antioxidantes/metabolismo , Toxinas Bacterianas/toxicidade , Fígado/metabolismo , Oxirredução , Estresse Oxidativo , Uracila/toxicidade
4.
Dis Aquat Organ ; 158: 133-141, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813854

RESUMO

A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.


Assuntos
Doenças dos Peixes , Microsporídios , Microsporidiose , Filogenia , Poecilia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Microsporídios/genética , Microsporídios/isolamento & purificação , Microsporídios/classificação , Microsporidiose/veterinária , Microsporidiose/microbiologia , Granada/epidemiologia
5.
J Fish Dis ; 47(6): e13937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440909

RESUMO

The guppy, Poecilia reticulata, is one of the most common cultured ornamental fish species, and a popular pet fish highly desired by hobbyists worldwide due to its availability of many brilliantly coloured fish of many varieties. The susceptibility of guppies to diseases presents a remarkable concern for both breeders and hobbyists. In this study, we report the emergence of disease in fancy guppies caused by a previously uncharacterized virus in the USA. This virus was isolated from moribund guppies in two separate outbreaks in California and Alabama, from December 2021 to June 2023. The infected guppies presented with acute morbidity and mortality shortly after shipping, displaying nonspecific clinical signs and gross changes including lethargy, anorexia, swimming at the water surface, gill pallor, mild to moderate coelomic distension and occasional skin lesions including protruding scales, skin ulcers and hyperaemia. Histological changes in affected fish were mild and nonspecific; however, liver and testes from moribund fish were positive for Tilapia lake virus (TiLV), the single described member in the family Amnoonviridae, using immunohistochemistry and in situ hybridization, although the latter was weak. A virus was successfully recovered following tissue inoculation on epithelioma papulosum cyprini and snakehead fish cell lines. Whole genome sequencing and phylogenetic analyses revealed nucleotide and amino acid homologies from 78.3%-91.2%, and 78.2%-97.7%, respectively, when comparing the guppy virus genomes to TiLV isolates. Based on the criteria outlined herein, we propose the classification of this new virus, fancy tailed guppy virus (FTGV), as a member of the family Amnoonviridae, with the name Tilapinevirus poikilos (from the Greek 'poikilos', meaning of many colours; various sorts, akin to 'poecilia').


Assuntos
Doenças dos Peixes , Filogenia , Poecilia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/patologia , Doenças dos Peixes/diagnóstico , California , Alabama
6.
Parasitol Res ; 123(1): 104, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240890

RESUMO

Tetrahymenosis is caused by the ciliated protozoan Tetrahymena and is responsible for serious economic losses to the aquaculture industry worldwide. However, information regarding the molecular mechanism leading to tetrahymenosis is limited. In previous transcriptome sequencing work, it was found that one of the two ß-tubulin genes in T. pyriformis was significantly expressed in infected fish, we speculated that ß-tubulin is involved in T. pyriformis infecting fish. Herein, the potential biological function of the ß-tubulin gene in Tetrahymena species when establishing infection in guppies was investigated by cloning the full-length cDNA of this T. pyriformis ß-tubulin (BTU1) gene. The full-length cDNA of T. pyriformis BTU1 gene was 1873 bp, and the ORF occupied 1134 bp, whereas 5' UTR 434 bp, and 3' UTR 305 bp whose poly (A) tail contained 12 bases. The predicted protein encoded by T. pyriformis BTU1 gene had a calculated molecular weight of 42.26 kDa and pI of 4.48. Moreover, secondary structure analysis and tertiary structure prediction of BTU1 protein were also conducted. In addition, morphology, infraciliature, phylogeny, and histopathology of T. pyriformis isolated from guppies from a fish market in Harbin were also investigated. Furthermore, qRT-PCR analysis and experimental infection assays indicated that the expression of BTU1 gene resulted in efficient cell proliferation during infection. Collectively, our data revealed that BTU1 is a key gene involved in T. pyriformis infection in guppies, and the findings discussed herein provide valuable insights for future studies on tetrahymenosis.


Assuntos
Poecilia , Tetrahymena pyriformis , Tetrahymena , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tetrahymena/genética , Poecilia/genética , DNA Complementar/metabolismo , Tetrahymena pyriformis/genética , Tetrahymena pyriformis/metabolismo , RNA Mensageiro/metabolismo
7.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396851

RESUMO

Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.


Assuntos
Albinismo Oculocutâneo , Albinismo , Poecilia , Animais , Poecilia/genética , Proteínas de Transporte/genética , Genômica , Perfilação da Expressão Gênica
8.
J Evol Biol ; 36(12): 1796-1810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916730

RESUMO

Among-individual variation in cognitive traits, widely assumed to have evolved under adaptive processes, is increasingly being demonstrated across animal taxa. As variation among individuals is required for natural selection, characterizing individual differences and their heritability is important to understand how cognitive traits evolve. Here, we use a quantitative genetic study of wild-type guppies repeatedly exposed to a 'detour task' to test for genetic variance in the cognitive trait of inhibitory control. We also test for genotype-by-environment interactions (GxE) by testing related fish under alternative experimental treatments (transparent vs. semi-transparent barrier in the detour-task). We find among-individual variation in detour task performance, consistent with differences in inhibitory control. However, analysis of GxE reveals that heritable factors only contribute to performance variation in one treatment. This suggests that the adaptive evolutionary potential of inhibitory control (and/or other latent variables contributing to task performance) may be highly sensitive to environmental conditions. The presence of GxE also implies that the plastic response of detour task performance to treatment environment is genetically variable. Our results are consistent with a scenario where variation in individual inhibitory control stems from complex interactions between heritable and plastic components.


Assuntos
Poecilia , Animais , Poecilia/genética , Fenótipo
9.
J Anim Ecol ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156548

RESUMO

Behavioural plasticity is a major driver in the early stages of adaptation, but its effects in mediating evolution remain elusive because behavioural plasticity itself can evolve. In this study, we investigated how male Trinidadian guppies (Poecilia reticulata) adapted to different predation regimes diverged in behavioural plasticity of their mating tactic. We reared F2 juveniles of high- or low-predation population origins with different combinations of social and predator cues and assayed their mating behaviour upon sexual maturity. High-predation males learned their mating tactic from conspecific adults as juveniles, while low-predation males did not. High-predation males increased courtship when exposed to chemical predator cues during development; low-predation males decreased courtship in response to immediate chemical predator cues, but only when they were not exposed to such cues during development. Behavioural changes induced by predator cues were associated with developmental plasticity in brain morphology, but changes acquired through social learning were not. We thus show that guppy populations diverged in their response to social and ecological cues during development, and correlational evidence suggests that different cues can shape the same behaviour via different neural mechanisms. Our study demonstrates that behavioural plasticity, both environmentally induced and socially learnt, evolves rapidly and shapes adaptation when organisms colonize ecologically divergent habitats.


La plasticidad conductual es un factor importante en las primeras fases de adaptación, pero se conocen poco sus efectos sobre la evolución porque la plasticidad conductual en sí puede evolucionar. En este estudio, investigamos cómo los machos del guppy de Trinidad (Poecilia reticulata) adaptados a regímenes de depredación diferentes, han divergido en la plasticidad de su táctica de apareamiento. Criamos juveniles provenientes de poblaciones de alta y baja depredación hasta segunda generación (F2) bajo diferentes combinaciones de señales sociales y de depredación, y evaluamos su comportamiento de apareamiento al llegar a la madurez sexual. Los machos de alta depredación aprendieron su táctica de apareamiento de sus conespecíficos adultos, mientras que los machos de baja depredación no. Los machos de alta depredación aumentaron su cortejo al ser expuestos a señales de depredadores durante su desarrollo; mientras que los machos de baja depredación redujeron su cortejo en respuesta a señales inmediatas de depredadores, pero tan solo cuando no fueron expuestos a tales señales durante el desarrollo. Los cambios conductuales observados inducidos por las señales de depredación están asociados con una plasticidad en el desarrollo de la morfología cerebral, pero los cambios adquiridos por aprendizaje social no. En conclusión, demostramos que las poblaciones de guppy han divergido en su respuesta a señales sociales y ecológicas durante su desarrollo, y mostramos evidencia correlativa que sugiere que diferentes tipos de señales pueden influenciar el mismo comportamiento via mecanismos neuronales diferentes. Nuestro estudio muestra que la plasticidad conductual, tanto inducida por el medio ambiente combo aprendida socialmente, evoluciona rápidamente e influencia la adaptación durante la colonización de hábitats ecológicamente divergentes.

10.
Parasitology ; 150(5): 434-445, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794418

RESUMO

The reliance on chemical communication is well established for evading predation in aquatic systems. Only a few studies have found evidence that chemical cues released from aquatic animals infected with parasites alter behaviour. Furthermore, the link between putative chemical cues and susceptibility to infection has not been studied. The objectives of this study were to determine if exposure to chemical cues from Gyrodactylus turnbulli-infected guppies (Poecilia reticulata) at various times post-infection resulted in altered behaviour of uninfected conspecifics, and if prior exposure to this putative infection cue reduced transmission. Guppies responded to this chemical cue. Those exposed for 10 min to cues released from fish that had been infected for 8 or 16 days spent less time in the centre half of the tank. Continuous exposure to infection cues for 16 days did not alter guppy shoal behaviour but provided partial protection against infection when the parasite was introduced. Shoals exposed to these putative infection cues became infected, but infection intensity increased more slowly and to a lower peak compared with shoals exposed to the control cue. These results indicate that guppies show subtle behavioural responses to infection cues, and that exposure to infection cues reduces the intensity of outbreaks.


Assuntos
Parasitos , Poecilia , Trematódeos , Animais , Poecilia/parasitologia , Sinais (Psicologia) , Comportamento Predatório
11.
Zoolog Sci ; 40(2): 168-174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042696

RESUMO

Individual recognition is a necessary cognitive ability for the maintenance of stable social relationships. Recent studies have shown that like primates, some fish species can distinguish familiar fish from unfamiliar strangers via face-recognition. However, the taxa of the studied fish species are restricted (within Perciformes) and the visual signal used for the recognition of fish remains unclear. Here, we investigated the visual signal for individual-recognition in males of a sexually dichromatic guppy (Poecilia reticulata, Cyprinodontiformes). Using guppy males, we examined the hypothesis that fish distinguish between familiar individuals and unknown strangers by their faces rather than by body coloration. We randomly presented focal fish with four types of composite photo-models: familiar (familiar-face and familiar-body = F/F), stranger (stranger-face and stranger-body = S/S), familiar face combined with stranger body (F/S) and stranger face combined with familiar body (S/F). Focal males infrequently attacked familiar-face models but frequently attacked stranger-face models, regardless of body types. These behavioral reactions indicate that guppy males discriminate between familiar and stranger males by their face, not body coloration with wide variation. Importantly, male faces contain clear individual-variation in white/metallic colored patches on the operculum visible for humans. Considering the photo-model, our results suggest that these patches might be an important visual stimulus for face-recognition in guppy males, like some cichlids. Comparative examination among males of different guppy variants, including wild type phenotype, suggests that the face color-patch is stable regardless of variation in body color, with a different genetic mechanism potentially underlying face and body colors.


Assuntos
Ciclídeos , Ciprinodontiformes , Poecilia , Humanos , Masculino , Animais , Poecilia/genética
12.
Ecotoxicology ; 32(5): 598-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37221437

RESUMO

The objective of this study was to determine the effect of salinity on anxiety behavior and liver antioxidant capacity in the guppy (Poecilia reticulata). Guppies were exposed to salinities of 0‰, 5‰, 10‰, 15‰ and 20‰ for acute stress tests, and then we analyzed the activity of antioxidant enzymes at 3, 6, 12, 24, 48, 72 and 96 h. During the experiment, the anxiety behavior of guppy was enhanced at salinities of 10‰, 15‰, and 20‰, as evidenced by a significantly higher latency time for the first passage through the upper part than that of the control group (P < 0.05). CAT activity was highest at 24 h in the treatment with the salinity of 10‰, and SOD and GPX activities were highest at 12 h into the treatment with the salinity of 10‰. The SOD and CAT activities were significantly higher than the control group after 96 h of treatment at different salinities (P < 0.05). The MDA contents of the experimental groups at salinities of 5‰ and 10‰ were not significantly different from the control group after 96 h of treatment (P > 0.05). While the MDA contents of the experimental groups at salinities of 15‰ and 20‰ were still significantly higher than the control group after 96 h of treatment (P < 0.05). The experimental results indicated that elevated salinity could lead to oxidative stress in the guppy, altering their anxiety behavior as well as the activity of antioxidant enzymes. In conclusion, drastic changes in salinity during culture should be avoided.


Assuntos
Antioxidantes , Poecilia , Estresse Salino , Animais , Ansiedade , Salinidade , Superóxido Dismutase
13.
Microsc Microanal ; 29(5): 1764-1773, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37639707

RESUMO

Olfaction is fundamental for sensing environmental chemicals and has obvious adaptive advantages. In fish, the peripheral olfactory organ is composed of lamellae in which the olfactory mucosa contains three main categories of olfactory sensory neurons (OSNs) as follows: ciliated (cOSNs), microvillous (mOSNs), and crypt cells. We studied the appearance of these different OSNs during development of Poecilia reticulata, given its growing use as animal model system. We performed immunohistochemical detection of molecular markers specific for the different OSNs, carrying out image analyses for marked-cell counting and measuring optical density. The P. reticulata olfactory organ did not show change in size during the first weeks of life. The proliferative activity increased at the onset of secondary sexual characters, remaining high until sexual maturity. Then, it decreased in both sexes, but with a recovery in females, probably in relation to their almost double body growth, compared to males. The density of both cOSNs and mOSNs remained constant throughout development, probably due to conserved functions already active in the fry, independently of the sex. The density of calretinin-positive crypt cells decreased progressively until sexual maturity, whereas the increased density of calretinin-negative crypt cell fraction, prevailing in later developmental stages, indicated their probable involvement in reproductive activities.


Assuntos
Neurônios Receptores Olfatórios , Poecilia , Animais , Feminino , Masculino , Calbindina 2 , Mucosa Olfatória
14.
Proc Biol Sci ; 289(1981): 20212784, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36000235

RESUMO

Complex evolutionary dynamics have produced extensive variation in brain anatomy in the animal world. In guppies, Poecilia reticulata, brain size and anatomy have been extensively studied in the laboratory contributing to our understanding of brain evolution and the cognitive advantages that arise with brain anatomical variation. However, it is unclear whether these laboratory results can be translated to natural populations. Here, we study brain neuroanatomy and its relationship with sexual traits across 18 wild guppy populations in diverse environments. We found extensive variation in female and male relative brain size and brain region volumes across populations in different environment types and with varying degrees of predation risk. In contrast with laboratory studies, we found differences in allometric scaling of brain regions, leading to variation in brain region proportions across populations. Finally, we found an association between sexual traits, mainly the area of black patches and tail length, and brain size. Our results suggest differences in ecological conditions and sexual traits are associated with differences in brain size and brain regions volumes in the wild, as well as sexual dimorphisms in the brain's neuroanatomy.


Assuntos
Poecilia , Animais , Encéfalo , Feminino , Masculino , Tamanho do Órgão , Fenótipo , Comportamento Predatório
15.
Mol Ecol ; 31(5): 1337-1357, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34170592

RESUMO

Parallel evolution, in which independent populations evolve along similar phenotypic trajectories, offers insights into the repeatability of adaptive evolution. Here, we revisit a classic example of parallelism, that of repeated evolution of brighter males in the Trinidadian guppy (Poecilia reticulata). In guppies, colonisation of low predation habitats is associated with emergence of 'more colourful' phenotypes since predator-induced viability selection for crypsis weakens while sexual selection by female preference for conspicuousness remains strong. Our study differs from previous investigations in three respects. First, we adopted a multivariate phenotyping approach to characterise parallelism in multitrait space. Second, we used ecologically-relevant colour traits defined by the visual systems of the two selective agents (i.e., guppy, predatory cichlid). Third, we estimated population genetic structure to test for adaptive (parallel) evolution against a model of neutral phenotypic divergence. We find strong phenotypic differentiation that is inconsistent with a neutral model but very limited support for the predicted pattern of greater conspicuousness at low predation. Effects of predation regime on each trait were in the expected direction, but weak, largely nonsignificant, and explained little among-population variation. In multitrait space, phenotypic trajectories of lineages colonising low from high predation regimes were not parallel. Our results are consistent with reduced predation risk facilitating adaptive differentiation, potentially by female choice, but suggest that this proceeds in independent directions of multitrait space across lineages. Pool-sequencing data also revealed SNPs showing greater differentiation than expected under neutrality, among which some are found in genes contributing to colour pattern variation, presenting opportunities for future genetic study.


Assuntos
Poecilia , Animais , Evolução Biológica , Cor , Feminino , Masculino , Fenótipo , Poecilia/genética , Comportamento Predatório
16.
Mol Ecol ; 31(5): 1333-1336, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100465

RESUMO

The Trinidadian guppy, Poecilia reticulata, is a long-studied model for the evolution of trade-offs in male nuptial coloration as a function of female mating preferences vs. predation risk. Previous work suggests that female mating preferences favour the evolution of increased conspicuous male coloration in low predation populations. In contrast, high predation risk shifts the balance towards reduced conspicuous coloration. In a From the Cover article in this issue of Molecular Ecology, Yong, Croft, Troscianko, Ramnarine, and Wilson (2021) use visual detection models to estimate the "conspicuousness" of male colour patterns as seen by guppies and their predators. The study fails to find robust patterns of increased conspicuousness in low predation populations. Only one of eight measures of conspicuousness showed parallel changes between high and low predation regimes, forcing us to reconsider the validity and repeatability of this classic example of parallel evolution.


Assuntos
Poecilia , Animais , Feminino , Masculino , Poecilia/genética , Comportamento Predatório
17.
Biol Lett ; 18(8): 20220167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975629

RESUMO

While the link between the gut microbiome and host behaviour is well established, how the microbiomes of other organs correlate with behaviour remains unclear. Additionally, behaviour-microbiome correlations are likely sex-specific because of sex differences in behaviour and physiology, but this is rarely tested. Here, we tested whether the skin microbiome of the Trinidadian guppy, Poecilia reticulata, predicts fish activity level and shoaling tendency in a sex-specific manner. High-throughput sequencing revealed that the bacterial community richness on the skin (Faith's phylogenetic diversity) was correlated with both behaviours differently between males and females. Females with richer skin-associated bacterial communities spent less time actively swimming. Activity level was significantly correlated with community membership (unweighted UniFrac), with the relative abundances of 16 bacterial taxa significantly negatively correlated with activity level. We found no association between skin microbiome and behaviours among male fish. This sex-specific relationship between the skin microbiome and host behaviour may indicate sex-specific physiological interactions with the skin microbiome. More broadly, sex specificity in host-microbiome interactions could give insight into the forces shaping the microbiome and its role in the evolutionary ecology of the host.


Assuntos
Microbioma Gastrointestinal , Poecilia , Animais , Bactérias/genética , Evolução Biológica , Feminino , Masculino , Filogenia , Poecilia/fisiologia
18.
Environ Toxicol ; 37(9): 2244-2258, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661388

RESUMO

Citrate functionalized iron oxide nanoparticles (IONPs) are employed for various purposes-including environmental remediation but the interaction of IONPs with aquatic contaminants is poorly understood. Among those, glyphosate-based herbicides are toxic and affect target organs such as the liver. Evaluations of livers of female Poecilia reticulata by exposures to IONPs at a concentration of 0.3 mg/L were performed with association to: (1) 0.65 mg of glyphosate per litter and (2) 1.3 mg of glyphosate per litter of Roundup Original, and (3) glyphosate P.A at 0.65 mg/L. These associations were carried out progressively, after 7, 14, and 21 days. We detected circulatory disturbances, inflammatory responses, activation of the immune system, regressive changes, and progressive responses with changes in the connective tissue and decreased glycogen reserve from days 14 to 21. Ultrastructural changes in the Disse space and microvilli of hepatocytes indicated decreased contact surface area. In general, the damage was time and concentration dependent, increasing from 7 to 14 days and tending to stabilize from 14 to 21 days. Therefore, herbicide-associated IONPs functioned as xenobiotics inducing intense cellular detoxification processes and activation of hepatic immune responses.


Assuntos
Herbicidas , Poecilia , Animais , Feminino , Glicina/análogos & derivados , Herbicidas/toxicidade , Fígado , Nanopartículas Magnéticas de Óxido de Ferro , Poecilia/fisiologia , Glifosato
19.
Am Nat ; 197(2): 176-189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33523782

RESUMO

AbstractKin recognition plays an important role in social behavior and evolution, but the proximate mechanisms by which individuals recognize kin remain poorly understood. In many species, individuals form a "kin template" that they compare with conspecifics' phenotypes to assess phenotypic similarity-and, by association, relatedness. Individuals may form a kin template through self-inspection (i.e., self-referencing) and/or by observing their rearing associates (i.e., family referencing). However, despite much interest, few empirical studies have successfully disentangled self-referencing and family referencing. Here, we employ a novel set of breeding crosses using the Trinidadian guppy (Poecilia reticulata) to disentangle referencing systems by manipulating exposure to kin from conception onward. We show that guppies discriminate among their full and maternal half siblings, which can be explained only by self-referencing. Additional behavioral experiments revealed no evidence that guppies incorporate the phenotypes of their broodmates or mother into the kin template. Finally, by manipulating the format of our behavioral tests, we show that olfactory communication is both necessary and sufficient for kin discrimination. These results provide robust evidence that individuals recognize kin by comparing the olfactory phenotypes of conspecifics with their own. This study resolves key questions about the proximate mechanisms underpinning kin recognition, with implications for the ontogeny and evolution of social behavior.


Assuntos
Poecilia/fisiologia , Comportamento Sexual Animal/fisiologia , Olfato , Animais , Sinais (Psicologia) , Feminino , Masculino , Poecilia/genética , Comportamento Social
20.
Environ Toxicol ; 36(6): 1125-1134, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33576126

RESUMO

The cyanotoxin cylindrospermopsin (CYN) is the second biggest cause of poisoning worldwide, both in humans and animals. Although CYN primarily affects the aquatic environments and can be absorbed in fishes by multiple routes, data reporting its toxicity and mechanism of action are still scarce in this group. Using P. reticulata as model species, it was evaluated whether CYN promotes mutagenic and genotoxic effects in different fish target tissues. Adult females were exposed in a static way to 0 (control), 0.5, 1.0, and 1.5 µg L-1 of pure CYN for 24 and 96 hours. For the first time, DNA damage was detected in fish brain after CYN exposition. In brain cells, a concentration-response DNA damage was observed for both exposure times, suggesting a direct or indirect action of CYN in neurotoxicity. For the liver cells, 96 hours caused an increase in DNA damage, as well the highest percentage of DNA in the tail was reached when used 1.5 µg L-1 of CYN. In peripheral blood cells, an increase in DNA damage was observed for all tested concentrations after 96 hours. In erythrocytes, micronuclei frequency was higher at 1.5 µg L-1 treatment while the erythrocyte nuclear abnormalities (ENA) frequency was significantly higher even at the lowest CYN concentration. Such data demonstrated that acute exposition to CYN promotes genotoxicity in the brain, liver, and blood cells of P. reticulata, as well mutagenicity in erythrocytes. It rises an alert regarding to the toxic effects of CYN for aquatic organisms as well as for human health.


Assuntos
Alcaloides , Poecilia , Adulto , Animais , Toxinas de Cianobactérias , Dano ao DNA , Feminino , Humanos , Uracila/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA