Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.852
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38942013

RESUMO

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Concentração de Íons de Hidrogênio , Grânulos de Estresse/metabolismo
2.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32359423

RESUMO

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/fisiologia , Expressão Gênica/genética , Genes Essenciais/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
3.
Cell ; 174(6): 1492-1506.e22, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30173914

RESUMO

The assembly of phase-separated structures is thought to play an important role in development and disease, but little is known about the regulation and function of phase separation under physiological conditions. We showed that during C. elegans embryogenesis, PGL granules assemble via liquid-liquid phase separation (LLPS), and their size and biophysical properties determine their susceptibility to autophagic degradation. The receptor SEPA-1 promotes LLPS of PGL-1/-3, while the scaffold protein EPG-2 controls the size of PGL-1/-3 compartments and converts them into less dynamic gel-like structures. Under heat-stress conditions, mTORC1-mediated phosphorylation of PGL-1/-3 is elevated and PGL-1/-3 undergo accelerated phase separation, forming PGL granules that are resistant to autophagic degradation. Significantly, accumulation of PGL granules is an adaptive response to maintain embryonic viability during heat stress. We revealed that mTORC1-mediated LLPS of PGL-1/-3 acts as a switch-like stress sensor, coupling phase separation to autophagic degradation and adaptation to stress during development.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Arginina/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Larva/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metilação , Mutagênese Sítio-Dirigida , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Temperatura
4.
Mol Cell ; 84(17): 3320-3335.e7, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173636

RESUMO

Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.


Assuntos
Arabidopsis , Resposta ao Choque Térmico , Complexo de Endopeptidases do Proteassoma , Ubiquitinação , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteólise , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Grânulos Citoplasmáticos/metabolismo
5.
EMBO J ; 43(3): 437-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228917

RESUMO

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Ativação Transcricional , Nucleotidiltransferases/metabolismo , Complexo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
6.
EMBO J ; 42(24): e113595, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37937667

RESUMO

Plants often experience recurrent stressful events, for example, during heat waves. They can be primed by heat stress (HS) to improve the survival of more severe heat stress conditions. At certain genes, sustained expression is induced for several days beyond the initial heat stress. This transcriptional memory is associated with hyper-methylation of histone H3 lysine 4 (H3K4me3), but it is unclear how this is maintained for extended periods. Here, we determined histone turnover by measuring the chromatin association of HS-induced histone H3.3. Genome-wide histone turnover was not homogenous; in particular, H3.3 was retained longer at heat stress memory genes compared to HS-induced non-memory genes during the memory phase. While low nucleosome turnover retained H3K4 methylation, methylation loss did not affect turnover, suggesting that low nucleosome turnover sustains H3K4 methylation, but not vice versa. Together, our results unveil the modulation of histone turnover as a mechanism to retain environmentally mediated epigenetic modifications.


Assuntos
Histonas , Nucleossomos , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Cromatina/genética , Resposta ao Choque Térmico/genética , Epigênese Genética
7.
Trends Biochem Sci ; 47(10): 824-838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660289

RESUMO

Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.


Assuntos
Temperatura Alta , Qualidade de Vida , Mudança Climática , Resposta ao Choque Térmico , Humanos
8.
Proc Natl Acad Sci U S A ; 120(4): e2209831120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669112

RESUMO

We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37° vs. 30°) in vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by in vitro passage of C. deneoformans strain XL280α for multiple generations at both 30° and at the host-relevant temperature of 37°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (Cryptococcus neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Animais , Camundongos , Retroelementos/genética , Cryptococcus neoformans/genética , Criptococose/genética , Genoma , Resposta ao Choque Térmico/genética , Elementos de DNA Transponíveis/genética
9.
Proc Natl Acad Sci U S A ; 120(42): e2305427120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812703

RESUMO

As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 °C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent-empirical-research using human subjects found a significantly lower maximum Tw at which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 °C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 °C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 °C warming. More widespread, but brief, dangerous heat stress occurs in a +2 °C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 °C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles.


Assuntos
Aquecimento Global , Transtornos de Estresse por Calor , Humanos , Mudança Climática , Temperatura , Resposta ao Choque Térmico , Temperatura Alta
10.
J Biol Chem ; 300(8): 107547, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992441

RESUMO

RNA thermometers are temperature-sensing non-coding RNAs that regulate the expression of downstream genes. A well-characterized RNA thermometer motif discovered in bacteria is the ROSE-like element (repression of heat shock gene expression). ATP-binding cassette (ABC) transporters are a superfamily of transmembrane proteins that harness ATP hydrolysis to facilitate the export and import of substrates across cellular membranes. Through structure-guided bioinformatics, we discovered that ROSE-like RNA thermometers are widespread upstream of ABC transporter genes in bacteria. X-ray crystallography, biochemistry, and cellular assays indicate that these RNA thermometers are functional regulatory elements. This study expands the known biological role of RNA thermometers to these key membrane transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/genética
11.
J Biol Chem ; 300(8): 107553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002672

RESUMO

The plasma membrane (PM) is constantly exposed to various stresses from the extracellular environment, such as heat and oxidative stress. These stresses often cause the denaturation of membrane proteins and destabilize PM integrity, which is essential for normal cell viability and function. For maintenance of PM integrity, most eukaryotic cells have the PM quality control (PMQC) system, which removes damaged membrane proteins by endocytosis. Removal of damaged proteins from the PM by ubiquitin-mediated endocytosis is a key mechanism for the maintenance of PM integrity, but the importance of the early endosome in the PMQC system is still not well understood. Here we show that key proteins in early/sorting endosome function, Vps21p (yeast Rab5), Vps15p (phosphatidylinositol-3 kinase subunit), and Vps3p/8p (CORVET complex subunits), are involved in maintaining PM integrity. We found that Vps21p-enriched endosomes change the localization in the vicinity of the PM in response to heat stress and then rapidly fuse and form the enlarged compartments to efficiently transport Can1p to the vacuole. Additionally, we show that the deubiquitinating enzyme Doa4p is also involved in the PM integrity and its deletion causes the mislocalization of Vps21p to the vacuolar lumen. Interestingly, in cells lacking Doa4p or Vps21p, the amounts of free ubiquitin are decreased, and overexpression of ubiquitin restored defective cargo internalization in vps9Δ cells, suggesting that defective PM integrity in vps9Δ cells is caused by lack of free ubiquitin.


Assuntos
Membrana Celular , Endocitose , Endossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas rab5 de Ligação ao GTP , Endocitose/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Resposta ao Choque Térmico/fisiologia , Vacúolos/metabolismo , Vacúolos/genética , Temperatura Alta , Ubiquitina/metabolismo , Proteínas rab de Ligação ao GTP
12.
Plant J ; 117(6): 1656-1675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055844

RESUMO

With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Resposta ao Choque Térmico/genética , Estresse Fisiológico , Fotossíntese , Folhas de Planta/metabolismo
13.
Plant J ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133822

RESUMO

UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.

14.
Plant J ; 119(2): 658-675, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678590

RESUMO

Heat stress poses a significant threat to maize, especially when combined with drought. Recent research highlights the potential of water replenishment to ameliorate grain weight loss. However, the mitigating mechanisms of heat in drought stress, especially during the crucial early grain-filling stage, remain poorly understood. We investigated the mechanism for mitigating heat in drought stress by water replenishment from the 12th to the 32nd days after silking in a controlled greenhouse experiment (Exp. I) and field trial (Exp. II). A significant reduction in grain weight was observed in heat stress compared to normal conditions. When water replenishment was applied to increase soil water content (SWC) under heat stress, the grain yield exhibited a notable increase ranging from 28.4 to 76.9%. XY335 variety was used for transcriptome sequencing to analyze starch biosynthesis and amino acid metabolisms in Exp. I. With water replenishment, the transcripts of genes responsible for trehalose 6-phosphate phosphates (TPP), alpha-trehalase (TRE), ADP-glcpyrophosphorylase, and starch synthase activity were stimulated. Additionally, the expression of genes encoding TPP and TRE contributed to an enhanced conversion of trehalose to glucose. This led to the conversion of sucrose from glucose-1-phosphate to ADP-glucose and ADP-glucose to amylopectin, ultimately increasing starch production by 45.1%. Water replenishment to boost SWC during heat stress also elevated the levels of essential amino acids in maize, including arginine, serine, tyrosine, leucine, glutamic acid, and methionine, providing valuable support to maize plants in adversity. Field trials further validated the positive impact of water replenishment on SWC, resulting in a notable increase in grain yield ranging from 7.1 to 9.2%. This study highlights the vital importance of adapting to abiotic stress and underscores the necessity of developing strategies to counteract its adverse effects on crop yield.


Assuntos
Aminoácidos , Secas , Sacarose , Água , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Aminoácidos/metabolismo , Água/metabolismo , Sacarose/metabolismo , Grão Comestível/fisiologia , Grão Comestível/genética , Temperatura Alta , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/fisiologia
15.
Plant J ; 117(6): 1642-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315509

RESUMO

Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Aclimatação , Luz , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
16.
Plant J ; 117(6): 1702-1715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334712

RESUMO

Potatoes (Solanum tuberosum L.) are a fundamental staple for millions of people worldwide. They provide essential amino acids, vitamins, and starch - a vital component of the human diet, providing energy and serving as a source of fiber. Unfortunately, global warming is posing a severe threat to this crop, leading to significant yield losses, and thereby endangering global food security. Industrial agriculture traditionally relies on excessive nitrogen (N) fertilization to boost yields. However, it remains uncertain whether this is effective in combating heat-related yield losses of potato. Therefore, our study aimed to investigate the combinatory effects of heat stress and N fertilization on potato tuber formation. We demonstrate that N levels and heat significantly impact tuber development. The combination of high N and heat delays tuberization, while N deficiency initiates early tuberization, likely through starvation-induced signals, independent of SELF-PRUNING 6A (SP6A), a critical regulator of tuberization. We also found that high N levels in combination with heat reduce tuber yield rather than improve it. However, our study revealed that SP6A overexpression can promote tuberization under these inhibiting conditions. By utilizing the excess of N for accumulating tuber biomass, SP6A overexpressing plants exhibit a shift in biomass distribution towards the tubers. This results in an increased yield compared to wild-type plants. Our results highlight the role of SP6A overexpression as a viable strategy for ensuring stable potato yields in the face of global warming. As such, our findings provide insights into the complex factors impacting potato crop productivity.


Assuntos
Solanum tuberosum , Humanos , Temperatura , Nitrogênio/metabolismo , Fertilização , Tubérculos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant J ; 117(6): 1873-1892, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168757

RESUMO

Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.


Assuntos
Mudança Climática , Secas , Resposta ao Choque Térmico , Produtos Agrícolas/genética , Desenvolvimento Vegetal , Estresse Fisiológico/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-39189870

RESUMO

Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.

19.
EMBO J ; 40(17): e105043, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287990

RESUMO

Tudor staphylococcal nuclease (TSN; also known as Tudor-SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant-specific SG-localized proteins. While approximately 30% of TSN interactors are recruited to stress granules de novo upon stress perception, 70% form a protein-protein interaction network present before the onset of stress. Finally, we demonstrate that TSN and stress granule formation promote heat-induced activation of the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1), the plant orthologue of mammalian AMP-activated protein kinase (AMPK). Our results establish TSN as a docking platform for stress granule proteins, with an important role in stress signalling.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Mapas de Interação de Proteínas , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Resposta ao Choque Térmico , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo
20.
Genes Cells ; 29(9): 782-791, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38987995

RESUMO

Heat stress strongly triggers the nuclear localization of the molecular chaperone HSP70. Hikeshi functions as a unique nuclear import carrier of HSP70. However, how the nuclear import of HSP70 is activated in response to heat stress remains unclear. Here, we investigated the effects of heat on the nuclear import of HSP70. In vitro transport assays revealed that pretreatment of the test samples with heat facilitated the nuclear import of HSP70. Furthermore, binding of Hikeshi to HSP70 increased when temperatures rose. These results indicated that heat is one of the factors that activates the nuclear import of HSP70. Previous studies showed that the F97A mutation in Hikeshi in an extended loop induced an opening in the hydrophobic pocket and facilitated the translocation of Hikeshi through the nuclear pore complex. We found that nuclear accumulation of HSP70 occurred at a lower temperature in cells expressing the Hikeshi-F97A mutant than in cells expressing wild-type Hikeshi. Collectively, our results show that the movement of the extended loop may play an important role in the interaction of Hikeshi with both FG (phenylalanine-glycine)-nucleoporins and HSP70 in a temperature-dependent manner, resulting in the activation of nuclear import of HSP70 in response to heat stress.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Choque Térmico HSP70 , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Núcleo Celular/metabolismo , Ligação Proteica , Temperatura Alta , Células HeLa , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Mutação , Proteínas de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA