RESUMO
BACKGROUND: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non-small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its significant impact. Therefore, it is important to identify cancer hemimethylation patterns. METHODS: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites. Highly hemimethylated genes are then studied for their biological interactions using available bioinformatics tools. RESULTS: In this paper, we have conducted the first-ever investigation of hemimethylation in lung cancer. Our results show that hemimethylation does exist in lung cells either as singletons or clusters. Most clusters contain only two or three CpG sites. Polarity clusters are much shorter than regular clusters and appear less frequently. The majority of clusters found in tumor samples have no overlap with clusters found in normal samples, and vice versa. Several genes that are known to be associated with cancer are hemimethylated differently between the cancerous and normal samples. Furthermore, highly hemimethylated genes exhibit many different interactions with other genes that may be associated with cancer. Hemimethylation has diverse patterns and frequencies that are comparable between normal and tumorous cells. Therefore, hemimethylation may be related to both normal and tumor cell development. CONCLUSIONS: Our research has identified CpG clusters and genes that are hemimethylated in normal and lung tumor samples. Due to the potential impact of hemimethylation on gene expression and cell function, these clusters and genes may be important to advance our understanding of the development and progression of non-small cell lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA , Epigênese Genética , Neoplasias Pulmonares/genética , Idoso , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Biologia Computacional , Ilhas de CpG/genética , Conjuntos de Dados como Assunto , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
The importance of maintaining DNA methylation patterns and faithful transmission of these patterns during cell division to ensure appropriate gene expression has been known for many decades now. It has largely been assumed that the symmetrical nature of CpG motifs, the most common site for DNA methylation in mammals, together with the presence of maintenance methylases able to methylate newly synthesised DNA, ensures that there is concordance of methylation on both strands. However, although this assumption is compelling in theory, little experimental evidence exists that either supports or refutes this assumption. Here, we have undertaken a genome-wide single-nucleotide resolution analysis to determine the frequency with which hemimethylated CpG sites exist in sheep muscle tissue. Analysis of multiple independent samples provides strong evidence that stably maintained hemimethylation is a very rare occurrence, at least in this tissue. Given the rarity of stably maintained hemimethylation, next-generation sequencing data from both DNA strands may be carefully combined to increase the accuracy with which DNA methylation can be measured at single-nucleotide resolution.
Assuntos
Metilação de DNA , Músculo Esquelético/metabolismo , Carneiro Doméstico/genética , Animais , Ilhas de CpG , Biblioteca GênicaRESUMO
Chloroviruses (family Phycodnaviridae) infect eukaryotic, freshwater, unicellular green algae. A unique feature of these viruses is an abundance of DNA methyltransferases, with isolates dedicating up to 4.5% of their protein coding potential to these genes. This diversity highlights just one of the long-standing values of the chlorovirus model system; where group-wide epigenomic characterization might begin to elucidate the function(s) of DNA methylation in large dsDNA viruses. We characterized DNA modifications in the prototype chlorovirus, PBCV-1, using single-molecule real time (SMRT) sequencing (aka PacBio). Results were compared to total available sites predicted in silico based on DNA sequence alone. SMRT-software detected N6-methyl-adenine (m6A) at GATC and CATG recognition sites, motifs previously shown to be targeted by PBCV-1 DNA methyltransferases M.CviAI and M. CviAII, respectively. At the same time, PacBio analyses indicated that 10.9% of the PBCV-1 genome had large interpulse duration ratio (ipdRatio) values, the primary metric for DNA modification identification. These events represent 20.6x more sites than can be accounted for by all available adenines in GATC and CATG motifs, suggesting base or backbone modifications other than methylation might be present. To define methylation stability, we cross-compared methylation status of each GATC and CATG sequence in three biological replicates and found â¼81% of sites were stably methylated, while â¼2% consistently lack methylation. The remaining 17% of sites were stochastically methylated. When methylation status was analyzed for both strands of each target, we show that palindromes existed in completely non-methylated states, fully-methylated states, or hemi-methylated states, though GATC sites more often lack methylation than CATG sequences. Given that both sequences are targeted by not just methyltransferases, but by restriction endonucleases that are together encoded by PBCV-1 as virus-originating restriction modification (RM) systems, there is strong selective pressure to modify all target sites. The finding that most instances of non-methylation are associated with hemi-methylation is congruent with observations that hemi-methylated palindromes are resistant to cleavage by restriction endonucleases. However, sites where hemi-methylation is conserved might represent a unique regulatory function for PBCV-1. This study serves as a baseline for future investigation into the epigenomics of chloroviruses and their giant virus relatives.
RESUMO
DNA methylation is an epigenetic event that involves adding a methyl group to the cytosine (C) site, especially the one that pairs with a guanine (G) site (ie, CG or CpG site), in a human genome. This event plays an important role in both cancerous and normal cell development. Previous studies often assume symmetric methylation on both DNA strands. However, asymmetric methylation, or hemimethylation (methylation that occurs only on 1 DNA strand), does exist and has been reported in several studies. Due to the limitation of previous DNA methylation sequencing technologies, researchers could only study hemimethylation on specific genes, but the overall genomic hemimethylation landscape remains relatively unexplored. With the development of advanced next-generation sequencing techniques, it is now possible to measure methylation levels on both forward and reverse strands at all CpG sites in an entire genome. Analyzing hemimethylation patterns may potentially reveal regions related to undergoing tumor growth. For our research, we first identify hemimethylated CpG sites in breast cancer cell lines using Wilcoxon signed rank tests. We then identify hemimethylation patterns by grouping consecutive hemimethylated CpG sites based on their methylation states, methylation "M" or unmethylation "U." These patterns include regular (or consecutive) hemimethylation clusters (eg, "MMM" on one strand and "UUU" on another strand) and polarity (or reverse) clusters (eg, "MU" on one strand and "UM" on another strand). Our results reveal that most hemimethylation clusters are the polarity type, and hemimethylation does occur across the entire genome with notably higher numbers in the breast cancer cell lines. The lengths or sizes of most hemimethylation clusters are very short, often less than 50 base pairs. After mapping hemimethylation clusters and sites to corresponding genes, we study the functions of these genes and find that several of the highly hemimethylated genes may influence tumor growth or suppression. These genes may also indicate a progressing transition to a new tumor stage.
RESUMO
BACKGROUND: Meiosis is a specialized germ cell cycle that generates haploid gametes. In the initial stage of meiosis, meiotic prophase I (MPI), homologous chromosomes pair and recombine. Extensive changes in chromatin in MPI raise an important question concerning the contribution of epigenetic mechanisms such as DNA methylation to meiosis. Interestingly, previous studies concluded that in male mice, genome-wide DNA methylation patters are set in place prior to meiosis and remain constant subsequently. However, no prior studies examined DNA methylation during MPI in a systematic manner necessitating its further investigation. RESULTS: In this study, we used genome-wide bisulfite sequencing to determine DNA methylation of adult mouse spermatocytes at all MPI substages, spermatogonia and haploid sperm. This analysis uncovered transient reduction of DNA methylation (TRDM) of spermatocyte genomes. The genome-wide scope of TRDM, its onset in the meiotic S phase and presence of hemimethylated DNA in MPI are all consistent with a DNA replication-dependent DNA demethylation. Following DNA replication, spermatocytes regain DNA methylation gradually but unevenly, suggesting that key MPI events occur in the context of hemimethylated genome. TRDM also uncovers the prior deficit of DNA methylation of LINE-1 retrotransposons in spermatogonia resulting in their full demethylation during TRDM and likely contributing to the observed mRNA and protein expression of some LINE-1 elements in early MPI. CONCLUSIONS: Our results suggest that contrary to the prevailing view, chromosomes exhibit dynamic changes in DNA methylation in MPI. We propose that TRDM facilitates meiotic prophase processes and gamete quality control.
Assuntos
Metilação de DNA , Prófase Meiótica I , Espermatogênese , Sequenciamento Completo do Genoma/métodos , Animais , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos , Masculino , Camundongos , Anotação de Sequência Molecular , Espermatócitos/química , Espermatogônias/química , Espermatozoides/química , TestículoRESUMO
DNA methylation (the addition of a methyl group to a cytosine) is an important epigenetic event in mammalian cells because it plays a key role in regulating gene expression. Most previous methylation studies assume that DNA methylation occurs on both positive and negative strands. However, a few studies have reported that in some genes, methylation occurs only on one strand (ie, hemimethylation) and has clustering patterns. These studies report that hemimethylation occurs on individual genes. It is unclear whether hemimethylation occurs genome-wide and whether there are hemimethylation differences between cancerous and noncancerous cells. To address these questions, we have developed the first-ever pipeline, named hemimethylation pipeline (HMPL), to identify hemimethylation patterns. Utilizing the available software and the newly developed Perl and R scripts, HMPL can identify hemimethylation patterns for a single sample and can also compare two different samples.